Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Chinese Journal of Biotechnology ; (12): 2357-2366, 2020.
Article in Chinese | WPRIM | ID: wpr-878492

ABSTRACT

Antigenic purity is important for quality control of the foot-and-mouth (FMD) whole virus inactivated vaccine. The recommended method for evaluation the antigenic purity of FMD vaccine is to check the serum conversion to non-structural protein (NSP) 3AB antibody after 2 to 3 times inoculation of animals with inactivated vaccine. In this study, we developed a quantitative ELISA to detect the amount of residual 3AB in vaccine antigen, to provide a reference to evaluate the antigenic purity of FMD vaccine. Monoclonal antibody (Mab) of NSP 3A and HRP-conjugated Mab of NSP 3B were used to establish a sandwich ELISA to quantify the NSP 3AB in vaccine antigen of FMD. Purified NSP 3AB expressed in Escherichia coli was serially diluted and detected to draw the standard curve. The detectable limit was determined to be the lowest concentration of standard where the ratio of its OD value to OD blank well was not less than 2.0. Results: The OD value was linearly corelated with the concentration of 3AB protein within the range between 4.7 and 600 ng/mL. The correlation coefficient R² is greater than 0.99, and the lowest detectable limit is 4.7 ng/mL. The amount of 3AB protein in non-purified inactivated virus antigen was detected between 9.3 and 200 ng/mL depending on the 12 different virus strains, whereas the amount of 3AB in purified virus antigen was below the lowest detectable limit. The amount of 3AB in 9 batches of commercial FMD vaccine antigens was between 9.0 and 74 ng/mL, whereas it was below the detectable limit in other 24 batches of commercial vaccine antigens. Conclusion: the sandwich ELISA established in this study is specific and sensitive to detect the content of 3AB protein in vaccine antigen of FMD, which will be a useful method for evaluation of the antigenic purity and quality control of FMD inactivated vaccine.


Subject(s)
Animals , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay , Foot-and-Mouth Disease/prevention & control , Foot-and-Mouth Disease Virus , Viral Nonstructural Proteins/genetics , Viral Vaccines
2.
Chinese Journal of Biotechnology ; (12): 1723-1735, 2019.
Article in Chinese | WPRIM | ID: wpr-771758

ABSTRACT

To establish a quantitative ELISA for human interleukin-35 (IL-35) detection, we cloned cDNAs encoding the 2 subunits IL-27EBI3 and IL-12p35 of IL-35 by RT-PCR and transformed the cDNAs into Escherichia coli BL21 star (DE3) by recombinant DNA technology. IL-27EBI3 and IL-12p35 were expressed as recombinant proteins and used as immunogen to immunize Balb/c mice. Spleen cells from the positive serum mice were isolated and fused with SP-2/0 myeloma cells. We obtained the hybridoma cell lines stably secreting target antibodies by indirect ELISA screening of the cell supernatants with recombinant IL-27EBI3 and IL-12p35 as antigen and consecutive subcloning of the cells in the well with positive supernatant. Following further measurement of supernatant titers of the antibodies and identification of their antigen specificity, we obtained a hybridoma cell line 3B11 that stably secrets antibody against IL-27EBI3 and a hybridoma cell line 3A10 that secrets antibody against IL-12p35. Both monoclonal antibodies (mAbs) were identified as the subtype of IgG1. Finally, using the anti-IL-27EBI3 mAb from 3B11 as the capture antibody and the anti-IL-12p35 mAb from 3A10 as the secondary antibody, we established a quantitative double-antibodies sandwich ELISA for IL-35 detection with streptavidin-biotin amplification system. Results demonstrated that the quantitative assay had a detection range of 3.12-200 pg/mL, a detectability of 1.26 pg/mL, and a crossing-reactive rate of 0.1%. The intra-batch RSD and the inter-batch RSD of the quantitative assay were 5.1%-5.6% and 5.6%-7.2%, respectively, and the fortified recovery was 89%-103%. Therefore, the sandwich ELISA assay for IL-35 meets the qualification of quantitative analysis and laid a stable foundation for the development of quantitative ELISA kit for IL-35 detection.


Subject(s)
Animals , Humans , Mice , Antibodies, Monoclonal , Antibody Specificity , Enzyme-Linked Immunosorbent Assay , Hybridomas , Interleukins , Mice, Inbred BALB C
3.
Article in English | IMSEAR | ID: sea-170292

ABSTRACT

Background & objectives: Anthrax caused by Bacillus anthracis is primarily a disease of herbivorous animals, although several mammals are vulnerable to it. ELISA is the most widely accepted serodiagnostic assay for large scale surveillance of cutaneous anthrax. The aims of this study were to develop and evaluate a quantitative ELISA for determination of IgG antibodies against B. anthracis protective antigen (PA) in human cutaneous anthrax cases. Methods: Quantitative ELISA was developed using the recombinant PA for coating and standard reference serum AVR801 for quantification. A total of 116 human test and control serum samples were used in the study. The assay was evaluated for its precision, accuracy and linearity. Results: The minimum detection limit and lower limit of quantification of the assay for anti-PA IgG were 3.2 and 4 μg/ml, respectively. The serum samples collected from the anthrax infected patients were found to have anti-PA IgG concentrations of 5.2 to 166.3 μg/ml. The intra-assay precision per cent CV within an assay and within an operator ranged from 0.99 to 7.4 per cent and 1.7 to 3.9 per cent, respectively. The accuracy of the assay was high with a per cent error of 6.5 - 24.1 per cent. The described assay was found to be linear between the range of 4 to 80 ng/ml (R2=0.9982; slope=0.9186; intercept = 0.1108). Interpretation & conclusions: The results suggested that the developed assay could be a useful tool for quantification of anti-PA IgG response in human after anthrax infection or vaccination.

SELECTION OF CITATIONS
SEARCH DETAIL