Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Acta sci., Biol. sci ; 43: e54709, 2021. graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1460978

ABSTRACT

Streptomyces 5.1 is a bacterium isolated from rice soils in the south of the Tolima department (Colombia). This microorganism is characterized by its antagonistic activity against rubber tree phytopathogens like Colletotrichum gloeosporioides, the causal agent of leaf anthracnose. The antifungal activity of this Streptomyces isolate has been associated with secondary metabolites production. However, the identity of those metabolites is unknown because its purification and identification have not been possible through classic chemical studies. Therefore, aiming to contribute in the study of the secondary metabolites produced by 5.1 from a molecular approach, this research seeks to identify -preliminarily- the genomic fingerprint changes associated with the production of antifungal secondary metabolites produced by Streptomyces 5.1 through the evaluation of a mutant library of 5.1 obtained by random mutagenesis using controlled ultraviolet light exposure. The antifungal activity of obtained mutants was evaluated using Colletotrichum gloeosporioides (C1) fungus as a biosensor, isolated by the Biotechnology Institute of Universidad Nacional de Colombia. In this way, the library of mutants of 5.1, initially formed by 300 isolations, was classified into two phenotypic groups of interest: enhanced mutants (1 isolate) and null mutants (11 isolates) of secondary metabolites. The genomic changes in both groups were analyzed by obtaining the genomic profile of the isolates using Repetitive Extragenic Palindromic (Rep-PCR). The obtained profiles evidenced the presence of one additional band in the enhanced mutant, and the absence of a specific band in the non-producing mutants, both in comparison with the original strain. These bands are proposed for a future sequencing study which will define their role in the production process of metabolites with antifungal activity in Streptomyces 5.1.


Subject(s)
Antifungal Agents/metabolism , Colletotrichum/metabolism , Phytochemicals/analysis , Mutagenesis , Streptomyces
2.
Malaysian Journal of Microbiology ; : 566-574, 2019.
Article in English | WPRIM | ID: wpr-823219

ABSTRACT

Aims@#Oleaginous yeasts are widely used for the production of biodiesel feedstocks because of their high lipid content. This research was aimed to conduct random mutagenesis of Rhodotorula mucilaginosa using ethyl methane sulfonate (EMS) and identify the mutants with improved lipid production. @*Methodology and results@#A total of twenty-two mutant isolates prescreened with cerulenin were produced and further characterized via M13 PCR fingerprinting to determine their polymorphism and genetic distances. Eight strains, namely M1, M2, M3, M4, M7, M10, M11 and M18, were chosen based on their genetic distances from the parental strain for biomass production. Six mutants (M1, M2, M3, M4, M7 and M18) showing the highest dry cell weights were further selected for evaluation of lipid production in a laboratory-scale bioreactor using glucose as a carbon source. Results indicated that parental strain exhibited lipid content of 1.83 g/L, while strains M1, M2, M3, M7 and M18 generated 2.37 g/L, 2.27 g/L, 2.27 g/L, 3.10 g/L and 3.83 g/L of intracellular lipid, respectively. These five mutants were identified to have significant increase in lipid production compared to the parental strain. @*Conclusion, significance and impact of study@#This study demonstrated enhanced lipid production in R. mucilaginosa by random mutagenesis. New generated strains had higher lipid productivity compared to parental strain and application of these strains in industry may reduce the overall cost of biodiesel production.

3.
Biol. Res ; 46(4): 395-405, 2013. ilus, tab
Article in English | LILACS | ID: lil-700402

ABSTRACT

Enzymes have been long used in man-made biochemical processes, from brewing and fermentation to current industrial production of fine chemicals. The ever-growing demand for enzymes in increasingly specific applications requires tailoring naturally occurring enzymes to the non-natural conditions found in industrial processes. Relationships between enzyme sequence, structure and activity are far from understood, thus hindering the capacity to design tailored biocatalysts. In the field of protein engineering, directed enzyme evolution is a powerful algorithm to generate and identify novel and improved enzymes through iterative rounds of mutagenesis and screening applying a specific evolutive pressure. In practice, critical checkpoints in directed evolution are: selection of the starting point, generation of the mutant library, development of the screening assay and analysis of the output of the screening campaign. Each step in directed evolution can be performed using conceptually and technically different approaches, all having inherent advantages and challenges. In this article, we present and discuss in a general overview, challenges of designing and performing a directed enzyme evolution campaign, current advances in methods, as well as highlighting some examples of its applications in industrially relevant enzymes.


Subject(s)
Biotechnology/methods , Directed Molecular Evolution/methods , Enzymes/metabolism , Protein Engineering/methods , Biocatalysis , Enzymes/chemistry , Enzymes/genetics , Mutagenesis
SELECTION OF CITATIONS
SEARCH DETAIL