Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 464
Filter
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 95-102, 2024.
Article in Chinese | WPRIM | ID: wpr-999165

ABSTRACT

ObjectiveTo explore the mechanism of Buzhong Yiqitang-containing serum in alleviating the cisplatin resistance in human non-small cell lung cancer (A549/DDP) cells via regulating the nuclear factor E2-related factor 2 (Nrf2)/reactive oxygen species (ROS) signaling pathway. MethodThe serum containing Buzhong Yiqitang was prepared and A549/DDP cells were cultured and randomly grouped: blank (10% blank serum), cisplatin (10% blank serum+20 mg·L-1 cisplatin), Buzhong Yiqitang (10% Buzhong Yiqitang-containing serum+20 mg·L-1 cisplatin), ML385 (10% blank serum+5 μmol·L-1 ML385+20 mg·L-1 cisplatin), Buzhong Yiqitang+ML385 (10% Buzhong Yiqitang-containing serum+5 μmol·L-1 ML385+20 mg·L-1 cisplatin), tertiary butylhydroquinone (TBHQ) (10% blank serum+5 μmol·L-1 TBHQ+20 mg·L-1 cisplatin), and Buzhong Yiqitang+TBHQ (10% Buzhong Yiqitang-containing serum+5 μmol·L-1 TBHQ+20 mg·L-1 cisplatin). The median inhibitory concentration (IC50) of cisplatin in each group was determined by the cell counting kit-8 (CCK-8) method and the resistance index (RI) was calculated. The apoptosis rate was detected by flow cytometry. The ROS content of each group was determined with the DCFH-DA fluorescence probe. Western blot was employed to determine the protein levels of Nrf2, cleaved cysteinyl aspartate-specific protease-3 (cleaved Caspase-3), cytochrome C (Cyt C), and B-cell lymphoma-2 (Bcl-2). ResultCompared with those in the cisplatin group, the IC50 and RI of A549/DDP cells to cisplatin in Buzhong Yiqitang, ML385, and Buzhong Yiqitang+ML385 groups decreased (P˂0.05). Compared with the blank group, the cisplatin, Buzhong Yiqitang, ML385, and Buzhong Yiqitang+ML385 groups showed increased apoptosis rate of A549/DDP cells (P˂0.05). Compared with the blank group, cisplatin promoted the expression of Nrf2 (P˂0.05). Compared with the cisplatin group, Buzhong Yiqitang, ML385, and Buzhong Yiqitang+ML385 inhibited the expression of Nrf2 (P<0.05), elevated the ROS level (P˂0.05), up-regulated the protein levels of cleaved Caspase-3 and Cyt C, and down-regulated the protein level of Bcl-2 (P<0.05), which were the most significant in the Buzhong Yiqitang+ML385 group. Compared with the cisplatin group, the TBHQ group showed increased IC50 and RI of cisplatin (P<0.05), decreased apoptosis rate of A549/DDP cells (P<0.05), up-regulated protein levels of Nrf2 and Bcl-2 (P<0.05), lowered level of ROS (P˂0.05), and down-regulated protein levels of cleaved Caspase-3 and Cyt C (P<0.05). Compared with the TBHQ group, Buzhong Yiqitang+TBHQ decreased the IC50 and RI of cisplatin in A549/DDP cells (P<0.05), increased the apoptosis rate (P<0.05), down-regulated the protein levels of Nrf2 and Bcl-2 (P<0.05), increased ROS (P˂0.05), and up-regulated the protein levels of cleaved Caspase-3 and Cyt C (P<0.05). ConclusionBuzhong Yiqitang induced apoptosis by inhibiting Nrf2/ROS pathway to alleviate cisplatin resistance in A549/DDP cells.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 10-19, 2024.
Article in Chinese | WPRIM | ID: wpr-1006550

ABSTRACT

ObjectiveTo observe the effect of Banxia Xiexintang (BXT) on the proliferation of human gastric cancer HGC-27, MKN-45, and AGS cells and its mechanism. MethodCell counting kit-8 (CCK-8) was used to detect the effects of different concentrations of BXT-containing serum (5%, 10%, and 20%) on the proliferation of HGC-27, MKN-45, and AGS cells. A mitochondrial membrane potential probe (TMRE) was used to detect the expression of mitochondrial membrane potential in cells. A kit was used to detect iron ion (Fe2+) content, lipid peroxide (LPO), and superoxide dismutase (SOD) activity. Western blot was used to detect the protein expression levels of glycogen synthase3β (GSK3β), phosphorylated GSK3β (p-GSK3β), nuclear factor E2 related factor 2 (Nrf2), and glutathione peroxidase 4 (GPX4). The real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of member 11 of the cystine/glutamic acid reverse transporter solute vector family 7 (SLC7A11), member 2 of the heavy chain solute vector family 3 (SLC3A2), transferrin receptor 3 (TFRC), and tumor protein (TP)53. ResultCCK-8 results showed that BXT and capecitabine could significantly reduce the survival rate of three kinds of gastric cancer cells after treatment with drug-containing serum for 24 h (P<0.01). After 48 h of intervention with drug-containing serum, the survival rate of three kinds of gastric cancer cells was significantly decreased in both the capecitabine group and the BXT group compared with the blank group. The BXT group was dose-dependent, with 20% BXT having the most significant effect (P<0.01). In terms of biochemical indicators of ferroptosis, compared with the blank group, BXT and capecitabine significantly decreased the expression of mitochondrial membrane potential (P<0.01) and SOD activity (P<0.01) and significantly increased the contents of LPO and Fe2+ (P<0.01), so as to improve the sensitivity of gastric cancer cells to ferroptosis. In terms of the Nrf2/GPX4 pathway, compared with the blank group, the BXT group could reduce the protein expressions of p-GSK3β, Nrf2, and GPX4 (P<0.01) in gastric cancer cells and increase mRNA expressions of SLC7A11 and SLC3A2 (P<0.05). It could also increase the protein expression of GSK3β (P<0.01) and mRNA expression of TP53 and TFRC (P<0.05, P<0.01) in gastric cancer cells. Inhibition of the Nrf2/GPX4 pathway induces ferroptosis in gastric cancer cells. Compared with the capecitabine group, the 20% BXT group showed a more obvious effect. ConclusionBanxia Xiexintang can induce ferroptosis in gastric cancer cells HGC-27, MKN-45, and AGS by inhibiting the Nrf2/GPX4 pathway.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 265-271, 2024.
Article in Chinese | WPRIM | ID: wpr-1006292

ABSTRACT

Acute pancreatitis (AP) is a common clinical acute abdominal disease, which is characterized by acute onset, rapid development, severe disease, many complications, and high mortality rate. It can progress to severe AP (SAP) if not treated promptly in the early stage. The pathogenesis of AP is complex and involves multiple cellular and molecular levels. It is now clear that oxidative stress and reactive oxygen species (ROS) production are involved in the physiopathological process of AP, which is associated with a low quantity and activity of antioxidant enzymes in pancreatic cells. Nuclear factor E2-related factor 2 (Nrf2) serves as the ''golden key'' to maintain redox homeostasis in tissue cells and constitutes an important signaling pathway for antioxidant response and inflammation in vivo by collaborating with downstream antioxidant enzymes such as heme oxygenase-1 (HO-1). Traditional Chinese medicine has unique efficacy in treating diseases due to its multi-component, multi-target, multi-drug delivery, and multi-formulation characteristics. Based on the concept of synergy between traditional Chinese and Western medicine, traditional Chinese medicine is becoming a new craze in the treatment of AP. The level of oxidative stress and Nrf2/HO-1 signaling pathway in AP pancreatic tissue are in a dynamic change process, and the intervention of traditional Chinese medicine can clean ROS production, affect the inflammatory pathway, and reduce oxidative stress damage, so as to protect against pancreatic injury. This suggests that this pathway plays an important role in AP. This article reviews the recent literature on the regulation of the Nrf2/HO-1 signaling pathway by traditional Chinese medicine for AP and summarizes that the monomers of traditional Chinese medicine targeting this pathway are mainly heat-clearing and detoxifying, blood-activating and blood-stasis-removing, and Qi benefiting and middle warming, and the compounds of traditional Chinese medicine include Yinchenhao Decoction and QingYi Ⅱ, so as to provide a new direction for the prevention and treatment of AP and further drug development.

4.
Acta Pharmaceutica Sinica ; (12): 84-93, 2024.
Article in Chinese | WPRIM | ID: wpr-1005427

ABSTRACT

Fraction absorbed (Fa) is an important parameter to describe the absorption level of oral drugs, and an important basis for the development and optimization of the formulation process. Because it is easily confused with the concept of absolute bioavailability, it has not received enough attention from the industry. There are many complex factors affecting Fa. There are three time-related factors that directly affect the extent of Fa: the release time, the absorption time, and the residence time. The relationship between these three time-related factors determines the extent of Fa. Generally, we are more concerned about the apparent factors that affect the extent of Fa, including independent variables and covariates; The independent variables include administered dose, route, dosage form, etc. The covariates are divided into internal and external factors, and external factors include food factors, drug interactions, etc. Internal causes include age, sex, disease, etc. This paper analyzes and systematically combs how independent variables and covariates directly or indirectly affect the three time-related factors by affecting the body's physiology and internal environment, thus changing the complex process of Fa. Understanding this theoretical framework can better optimize the independent variables to reduce the impact of covariates on Fa. In addition, this paper also introduces the latest progress of prediction and evaluation of Fa, including the progress of complex dissolution device and the status of software prediction.

5.
China Pharmacy ; (12): 124-128, 2024.
Article in Chinese | WPRIM | ID: wpr-1005226

ABSTRACT

Myocardial ischemia-reperfusion injury (MIRI) is a serious complication of revascularization in patients with myocardial infarction. The nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway plays an important role in the pathological process of MIRI. Currently,research has found that traditional Chinese medicine has a good effect on myocardial injury caused by ischemia-reperfusion. Based on the Nrf2/HO-1 signaling pathway,this article summarizes the action mechanism of traditional Chinese medicine formulas and monomers in intervening with MIRI. It is found that traditional Chinese medicine formulas (Yixin formula,Wenyang tongmai formula,Dingxin formula Ⅰ),monomers such as terpenoids (ginkgolides, astragaloside Ⅳ,ginsenosides),phenols (brazilin,hematoxylin A,resveratrol) and quinones (aloe,emodin) can alleviate MIRI by activating the Nrf2/HO-1 signaling pathway,inhibiting oxidative stress and inflammatory reactions,etc.

6.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 118-126, 2024.
Article in Chinese | WPRIM | ID: wpr-1003415

ABSTRACT

ObjectiveTo observe the effect of earthworm protein on the expression of phosphatidylinositol 3-kinase/protein kinase B/nuclear factor E2-related factor 2 (PI3K/Akt/Nrf2) pathway in the aorta of spontaneously hypertensive rats (SHR) and explore mechanism of earthworm protein in treating hypertensive vascular endothelial dysfunction (VED). MethodTen 10-week-old Wistar Kyoto (WKY) rats and fifty SHR rats were selected for a week of adaptive feeding. WKY rats were selected as the normal group, and fifty SHR rats were randomized according to body weight into model, valsartan (8×10-3 g·kg-1·d-1), and high-, medium-, and low-dose (0.2, 0.1, 0.05 g·kg-1·d-1, respectively) earthworm protein groups. The normal and model groups were administrated with equal volume of double distilled water by gavage. During the drug intervention period, the general situations of rats in each group were observed and their blood pressure was monitored at specific time points every other week before and after administration. After 8 weeks of drug intervention, enzyme-linked immunosorbent assay was employed to measure the levels of angiotensin-Ⅱ (Ang-Ⅱ) and endothelin-1 (ET-1) in the serum of rats in each group. The corresponding kits were used to determine the levels of nitric oxide (NO), malondialdehyde (MDA), glutathione peroxidase (GPX), superoxide dismutase (SOD), and ferrous ion (Fe2+). Hematoxylin-eosin (HE) staining was employed to observe the changes in the intima of the aorta. Fluorescence quantitative polymerase chain reaction (Real-time PCR) was employed to measure the mRNA levels of PI3K, Akt, Nrf2, heme oxygenase-1 (HO-1), and glutathione peroxidase 4 (GPX4) in the aortic tissue. Western blotting was used to determine the protein levels of p-PI3K (Tyr467/199), PI3K, p-Akt (Ser473), Akt, Nrf2, HO-1, and GPX4 in the thoracic aorta. ResultCompared with the normal group, the model group had decreased body mass, increased irritability, severe endothelial damage, elevated blood pressure and serum levels of Ang-Ⅱ, ET1, MDA, and Fe2+ (P<0.01), lowered NO level (P<0.01), and down-regulated mRNA and protein levels of p-PI3K (Tyr467/199), PI3K, p-Akt (Ser473), Akt, Nrf2, HO-1, and GPX4 in the aortic tissue (P<0.01). Compared with the model group, drug intervention caused no significant change in the body mass, calmed the rats, alleviated the endothelial damage, lowered blood pressure and serum levels of Ang-Ⅱ, ET1, MDA, and Fe2+ (P<0.01), elevated the NO level (P<0.05), and up-regulated the mRNA and protein levels of p-PI3K (Tyr467/199), PI3K, p-Akt (Ser473), Akt, Nrf2, HO-1, and GPX4 (P<0.05). ConclusionThe earthworm protein can exert antihypertensive effects by ameliorating VED in SHR. Specifically, it may regulate the PI3K/Akt/Nrf2 signaling pathway to inhibit oxidative stress and ferroptosis.

7.
Shanghai Journal of Preventive Medicine ; (12): 186-191, 2024.
Article in Chinese | WPRIM | ID: wpr-1016549

ABSTRACT

ObjectiveTo investigate the current status of first aid knowledge among middle-aged and elderly residents aged 50 and above in a community in Shanghai, in order to provide reference for improving the self-rescue and mutual aid capabilities of middle-aged and elderly residents. MethodsA multi-stage stratified random sampling method was used to conduct a survey on 335 residents aged 50 and above in a community in Shanghai using a self-made survey questionnaire. The current situation and related factors of emergency knowledge level of residents aged 50 and above in the community were comprehensively analyzed. ResultsFirst aid knowledge level of 335 residents aged 50 and above was low, and the rate of high cognitive level was only 24.18%. Univariate analysis showed that male residents had a higher awareness rate than female residents (P=0.044), while residents aged 70 and above and 60‒ had lower awareness rates than residents aged 50‒ (P<0.05). Residents with chronic diseases had a higher awareness rate than those who did not (P=0.031). Residents with family members suffering from chronic diseases had a higher awareness rate than those without (P<0.001). Experience of first aid training affected residents’ awareness of first aid (P=0.003). ConclusionThe level of first aid knowledge among middle-aged and elderly residents aged 50 and above in the community is low. Age, the presence of chronic diseases in family members, and emergency training are independent and relevant factors that affect the awareness of first aid knowledge among middle-aged and elderly residents. The government and relevant institutions should explore the establishment of a standardized emergency response training system, implement classification and grading for middle-aged and elderly groups with different characteristics, and provide targeted emergency training to strengthen their self-rescue and mutual aid capabilities and improve the success rate of pre-hospital emergency care.

8.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 219-227, 2024.
Article in Chinese | WPRIM | ID: wpr-1013359

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease characterized by a progressive decline in memory and cognitive function. β-amyloid protein (Aβ) aggregation and excessive phosphorylation of Tau protein in the brain can increase oxidative stress levels, leading to energy metabolism imbalance, extensive apoptosis of nerve cells, and damage to synaptic function. The nuclear factor E2 related factor 2 (Nrf2) encoded by the Nfe212 gene is known as the "main regulatory factor" of antioxidant response. On the one hand, It can activate antioxidant response elements, such as heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase1 (NQO1), increase the expression of antioxidant enzymes glutathione S-transfer (GST) and superoxide dismutase 1 (SOD1), and reduce the release of reactive oxygen species. On the other hand, it can inhibit immune inflammation, cell apoptosis, and activation of autophagy pathways and delay the progression of AD. Therefore, this article summarized, analyzed, and reviewed the relevant research on the regulation of the Nrf2 signaling pathway by traditional Chinese medicine in the prevention and treatment of AD in the past five years, including its structural characteristics, pathway conduction, mechanism of action in AD, and drug regulation. The results showed that among all reports, research on traditional Chinese medicine compounds occupied a high proportion and mostly focused on flavonoids, with the Nrf2/HO-1 and PI3K/Nrf2 signaling pathways being the most extensively studied. The mechanisms of action were mainly to inhibit oxidative stress, neuroinflammation, and cell apoptosis and improve synaptic function. This indicates that traditional Chinese medicine can regulate multiple Nrf2 signaling pathways and play a role in preventing and treating Alzheimer's disease from multiple mechanisms.

9.
International Eye Science ; (12): 561-566, 2024.
Article in Chinese | WPRIM | ID: wpr-1012821

ABSTRACT

Age-related macular degeneration(ARMD)is a neurodegenerative disease associated with oxidative stress. It is characterized by progressive death of photoreceptors and retinal pigment epithelium(RPE), and is one of the leading causes of irreversible loss of central vision in patients over the age of 65 years old. MicroRNA(miRNA)is a class of regulatory short-chain non-coding RNA that can bind and inhibit multiple gene targets in the same biological pathway. This unique property makes microRNA an ideal target for exploring the pathogenesis, diagnosis and treatment of non-exudative ARMD. Previous studies have found that the pathogenesis of non-exudative ARMD involves age, genetics, environment, oxidative stress, lipid metabolism, autophagy and immunity. However, the exact mechanisms have not been fully clarified. As biomarkers of non-exudative ARMD, miRNA play a role in oxidative stress and lipid metabolism. This article summarizes the role of various miRNA in targeting Nrf2 and HIF-1α to inhibit hypoxia-related angiogenesis signaling, thereby affecting oxidative stress. Additionally, miRNA regulate lipid uptake and the expression of ABCA1 in RPE and macrophages, thereby influencing lipid metabolism. This deepens the understanding of the role of miRNA in oxidative stress and lipid metabolism in non-exudative ARMD, and provides directions for further improving the understanding of the pathogenesis and prevention of non-exudative ARMD.

10.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 131-139, 2024.
Article in Chinese | WPRIM | ID: wpr-1011451

ABSTRACT

ObjectiveTo investigate the effect and mechanism of Shenqi Tangluo pill (SQTLP) on oxidative stress injury of skeletal muscle of type 2 diabetes mellitus (T2DM) mice based on nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1)/NAD(P)H quinone oxidoreductase 1 (NQO1) pathway. MethodA total of 60 7-week-old male db/db mice [specific pathogen-free (SPF) grade] were selected and fed for one week for adaption. They were divided into the model control group, SQTLP low-, medium- and high-dose (19, 38, and 76 g·kg-1) groups and metformin group (0.26 g·kg-1) by gavage. Each group consisted of 12 mice. Twelve male db/m mice of the same age were selected as the blank group. The intervention was implemented continuously for 8 weeks. Fasting blood glucose (FBG) was detected. Fasting serum insulin (FINS) levels were detected by enzyme-linked immunosorbent assay (ELISA), and the homeostasis model assessment-insulin resistance (HOMA-IR) index and the homeostasis model assessment-insulin sensitivity index (HOMA-ISI) were calculated. Oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) were conducted. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and the contents of malondialdehyde (MDA) and reduced nicotinamide adenine dinucleotide phosphate (NADPH) in skeletal muscle tissues were detected by biochemical kits. Hematoxylin-eosin (HE) staining was used to observe the pathological changes in skeletal muscle tissues. The levels of reactive oxygen species (ROS) and 4-hydroxynonenal (4-HNE) in skeletal muscle tissue were detected by immunofluorescence (IF). The expression levels of Nrf2, HO-1, NQO1 and glutamate-cysteine ligase catalytic subunit (GCLC) proteins in skeletal muscle tissues were detected by Western blot. ResultCompared with those in the blank group, FBG, FINS and HOMA-IR in the model group were significantly increased (P<0.05), while HOMA-ISI was decreased (P<0.05). The results of OGTT and ITT showed that blood glucose was significantly increased at all time points (P<0.05), and glucose tolerance and insulin tolerance were significantly impaired. SOD and GSH-Px activities in skeletal muscle tissues were significantly decreased (P<0.05), and MDA and NADPH contents were significantly increased (P<0.05). In skeletal muscle tissues, the arrangement of muscle fibers was loose, the nucleus was disordered, and inflammatory cells were infiltrated. The expression levels of ROS and 4-HNE in skeletal muscle tissues were significantly increased (P<0.05). The protein expression levels of Nrf2, HO-1, NQO1 and GCLC in skeletal muscle tissues were significantly decreased (P<0.05). Compared with those in the model group, FBG, FINS and HOMA-IR in the metformin group were significantly decreased (P<0.05), while HOMA-ISI was increased (P<0.05). The results of OGTT and ITT showed that blood glucose in the metformin group was significantly decreased at all time points (P<0.05). The activities of SOD and GSH-Px in skeletal muscle tissues were significantly increased (P<0.05), while the contents of MDA and NADPH were significantly decreased (P<0.05). No obvious abnormality was found in the skeletal muscle tissue of the metformin group. The expressions of ROS and 4-HNE in skeletal muscle tissues were decreased (P<0.05). The protein expression levels of Nrf2, HO-1, NQO1 and GCLC in skeletal muscle tissues were significantly increased (P<0.05). Compared with those in the model group, FBG, FINS and HOMA-IR in the SQTLP medium- and high-dose groups were significantly decreased (P<0.05), while HOMA-ISI was increased (P<0.05). The results of OGTT and ITT showed that the glucose tolerance and insulin tolerance of mice were improved in each dose group of SQTLP. The GSH-Px activity in the SQTLP low-dose group was significantly increased (P<0.05), and the NADPH content was decreased (P<0.05). The activities of SOD and GSH-Px in the SQTLP medium- and high-dose groups were significantly increased (P<0.05), while the contents of MDA and NADPH were significantly decreased (P<0.05). The skeletal muscle tissue injury of mice in each dose group of SQTLP was ameliorated to different degrees. In the SQTLP medium- and high-dose groups, the expressions of ROS and 4-HNE were decreased (P<0.05), and the protein expression levels of Nrf2, HO-1, NQO1 and GCLC were significantly increased (P<0.05). Compared with those in the SQTLP low-dose group, FBG and HOMA-IR in the SQTLP high-dose group were significantly decreased (P<0.05), while HOMA-ISI was increased (P<0.05). The results of OGTT and ITT showed that the SQTLP high-dose group significantly improved the glucose tolerance and insulin tolerance of mice. The activities of SOD and GSH-Px in skeletal muscle tissues were significantly increased (P<0.05), while the contents of MDA and NADPH were significantly decreased (P<0.05). No obvious abnormality was found in the skeletal muscle tissue, the expressions of ROS and 4-HNE were decreased (P<0.05), and the protein expression levels of Nrf2, HO-1, NQO1 and GCLC were significantly increased (P<0.05) in the skeletal muscle tissue of the SQTLP high-dose group. ConclusionSQTLP can significantly improve IR in T2DM mice, and the mechanism is related to SQTLP activating the Nrf2/HO-1/NQO1 signaling pathway, promoting the expression of antioxidant enzymes, and thus improving the oxidative stress injury in the skeletal muscle.

11.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 104-111, 2024.
Article in Chinese | WPRIM | ID: wpr-1011448

ABSTRACT

ObjectiveTo investigate the effects of Xinjia Congrong Tusizi decoction (XJCTD) on ovarian functions in the rat model of premature ovarian insufficiency (POI) and decipher the mechanism of regulating the tumor suppressor protein (p53)/nuclear factor E2-related factor 2 (Nrf2) pathway to attenuate granulosa cell ferroptosis. MethodForty-eight SPF-grade female SD rats were randomized into control, model, low-, medium-, and high-dose (1.1, 2.2, 4.4 g·kg-1) XJCTD, and Western medicine (coenzyme Q10, 0.002 7 g·kg-1) groups, with eight rats in each group. The rat model of POI was established by gavage of triptolide (TP), and after successful modeling, each group was administrated with the corresponding drugs by gavage for 14 d. The body weight and ovarian weight of each rat were weighed and the ovarian index was calculated. The morphology of the ovarian tissue was observed by hematoxylin-eosin staining, and the proportions of growing follicles and atretic follicles were calculated. The serum levels of anti-Müllerian hormone (AMM), estradiol (E2), and follicle-stimulating hormone (FSH) were measured by enzyme-linked immunosorbent assay (ELISA). The DCFH-DA fluorescent probe was used to measure the reactive oxygen species (ROS) content in granulosa cells. The content of cellular Ferrous ion (Fe2+), lipid peroxide (LPO), malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) was detected by colorimetry. The expression of the tumor suppressor protein p53,Nrf2, solute carrier family 7 member 11 (SLC7A11), and glutathione peroxidase 4 (GPX4) was determined by immunohistochemistry and Western blot. ResultCompared with the control group, the model group showed decreased ovarian weight, body weight, and ovarian index (P<0.01), reduced ovarian tissue volume and proportion of growing follicles (P<0.01), increased proportion of atretic follicles (P<0.01), lowered AMH and E2 levels and elevated FSH level in the serum (P<0.01), and elevated levels of Fe2+, ROS, LPO, and MDA (P<0.01) and lowered levels of GSH and SOD in granulosa cells (P<0.01). Moreover, the modeling up-regulated the expression of p53 (P<0.01) and down-regulated the expression of Nrf2, SLC7A11, and GPX4 (P<0.05, P<0.01) in the ovarian tissue. Compared with the model group, XJCTD increased the body weight, ovarian weight, and ovarian index (P<0.01), alleviated the pathological changes in the ovarian tissue, increased the proportion of growing follicles (P<0.01), decreased the proportion of atretic follicles (P<0.01), and reduced the content of ROS in granulosa cells (P<0.05, P<0.01). In addition, medium- and high-dose XJCTD lowered the FSH level (P<0.01) and raised E2 and AMH levels (P<0.01) in the serum, reduced the Fe2+ content (P<0.05, P<0.01), and increased the SOD content (P<0.01) in granulosa cells. High-dose XJCTD reduced the LPO and MDA content (P<0.01) and increased the SOD content (P<0.01) in the granulosa cells, down-regulated the expression of p53 (P<0.05), and up-regulated the expression of Nrf2, SLC7A11, and GPX4 in the ovarian tissue (P<0.05, P<0.01). ConclusionXJCTD may protect the ovarian function in the rat model of POI by regulating the p53/Nrf2 signaling pathway to attenuate the ferroptosis of ovarian granulosa cells.

12.
Chinese Journal of Reparative and Reconstructive Surgery ; (12): 74-81, 2024.
Article in Chinese | WPRIM | ID: wpr-1009112

ABSTRACT

OBJECTIVE@#To investigate the effects and underlying mechanisms of VX765 on osteoarthritis (OA) and chondrocytes inflammation in rats.@*METHODS@#Chondrocytes were isolated from the knee joints of 4-week-old Sprague Dawley (SD) rats. The third-generation cells were subjected to cell counting kit 8 (CCK-8) analysis to assess the impact of various concentrations (0, 1, 5, 10, 20, 50, 100 μmol/L) of VX765 on rat chondrocyte activity. An in vitro lipopolysaccharide (LPS) induced cell inflammation model was employed, dividing cells into control group, LPS group, VX765 concentration 1 group and VX765 concentration 2 group without obvious cytotoxicity. Western blot, real-time fluorescence quantitative PCR, and ELISA were conducted to measure the expression levels of inflammatory factors-transforming growth factor β 1 (TGF-β 1), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α). Additionally, Western blot and immunofluorescence staining were employed to assess the expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1). Thirty-two SD rats were randomly assigned to sham surgery group (group A), OA group (group B), OA+VX765 (50 mg/kg) group (group C), and OA+VX765 (100 mg/kg) group (group D), with 8 rats in each group. Group A underwent a sham operation with a medial incision, while groups B to D underwent additional transverse incisions to the medial collateral ligament and anterior cruciate ligament, with removal of the medial meniscus. One week post-surgery, groups C and D were orally administered 50 mg/kg and 100 mg/kg VX765, respectively, while groups A and B received an equivalent volume of saline. Histopathological examination using HE and safranin-fast green staining was performed, and Mankin scoring was utilized for evaluation. Immunohistochemical staining technique was employed to analyze the expressions of matrix metalloproteinase 13 (MMP-13) and collagen type Ⅱ.@*RESULTS@#The CCK-8 assay indicated a significant decrease in cell viability at VX765 concentrations exceeding 10 μmol/L ( P<0.05), so 4 μmol/L and 8 μmol/L VX765 without obvious cytotoxicity were selected for subsequent experiments. Following LPS induction, the expressions of TGF-β 1, IL-6, and TNF-α in cells significantly increased when compared with the control group ( P<0.05). However, intervention with 4 μmol/L and 8 μmol/L VX765 led to a significant decrease in expression compared to the LPS group ( P<0.05). Western blot and immunofluorescence staining demonstrated a significant upregulation of Nrf2 pathway-related molecules Nrf2 and HO-1 protein expressions by VX765 ( P<0.05), indicating Nrf2 pathway activation. Histopathological examination of rat knee joint tissues and immunohistochemical staining revealed that, compared to group B, treatment with VX765 in groups C and D improved joint structural damage in rat OA, alleviated inflammatory reactions, downregulated MMP-13 expression, and increased collagen type Ⅱ expression.@*CONCLUSION@#VX765 can improve rat OA and reduce chondrocyte inflammation, possibly through the activation of the Nrf2 pathway.


Subject(s)
Rats , Animals , Chondrocytes/metabolism , Matrix Metalloproteinase 13/metabolism , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/metabolism , Collagen Type II/metabolism , Interleukin-6 , Lipopolysaccharides/pharmacology , NF-E2-Related Factor 2/pharmacology , Inflammation/drug therapy , Osteoarthritis/metabolism , Transforming Growth Factor beta1/metabolism , Dipeptides , para-Aminobenzoates
13.
Int. j. morphol ; 41(6): 1887-1896, dic. 2023. ilus, graf
Article in English | LILACS | ID: biblio-1528807

ABSTRACT

SUMMARY: The therapeutic effect of a granulocyte-colony stimulating factor (G-CSF) biosimilar drug, zarzio, on non-alcoholic fatty liver disease (NAFLD) in a rat model was investigated in this study. Thirty-two rats were randomly divided into four groups. Groups I and II were fed a standard laboratory diet, whereas groups III and IV were fed a high fat diet (HFD) for 14 weeks. After 12 weeks of feeding, groups I and III were administered normal saline, and groups II and IV were intraperitoneally administered zarzio (200 mg/kg/day) for two consecutive weeks. Hematoxylin-eosin (H&E) staining was used to assess hepatic and pancreatic morphology in all groups, oil red O (ORO) staining for lipid accumulation, Masson's staining for fibrosis, and immunohistochemistry assay for hepatic protein expression of insulin receptor substrate 1 (IRS1), nuclear factor erythroid 2-related factor 2 (Nrf2), tumour necrosis factor alpha (TNF-α) and pancreatic caspase-3. The NAFLD rats (group III) developed hepatic steatosis with increased lipid accumulation, perisinusoidal fibrosis, upregulated IRS1, TNF-α (all P<0.05) without a significant increase in Nrf2 protein expression compared with normal control. In comparison, model rats treated with zarzio (group IV) showed significant rejuvenation of the hepatic architecture, reduction of fat accumulation, and fibrosis. This was accompanied by the upregulation of Nrf2, downregulation of IRS1 and TNF-α protein expression (all P<0.05). No correlation was detected between NAFLD and non-alcoholic fatty pancreas disease (NAFPD). However, the pancreatic β-cells in group III showed increased caspase-3 expression, which was decreased (P<0.05) in group IV. In conclusion, zarzio ameliorates NAFLD by improving the antioxidant capacity of liver cells, reducing hepatic IRS1, TNF-α protein expression and pancreatic β-cells apoptosis, suggesting that zarzio could be used as a potential therapy for NAFLD.


En este estudio se investigó el efecto terapéutico de un fármaco biosimilar del factor estimulante de colonias de granulocitos (G-CSF), zarzio, sobre la enfermedaddel hígado graso no alcohólico (NAFLD) en un modelo de rata. Treinta y dos ratas se dividieron aleatoriamente en cuatro grupos. Los grupos I y II fueron alimentados con una dieta estándar de laboratorio, mientras que los grupos III y IV fueron alimentados con una dieta alta en grasas (HFD) durante 14 semanas. Después de 12 semanas de alimentación, a los grupos I y III se les administró solución salina normal, y a los grupos II y IV se les administró zarzio por vía intraperitoneal (200 mg/kg/ día) durante dos semanas consecutivas. Se utilizó tinción de hematoxilina-eosina (H&E) para evaluar la morfología hepática y pancreática en todos los grupos, tinción con rojo aceite O (ORO) para la acumulación de lípidos, tinción de Masson para la fibrosis y ensayo de inmunohistoquímica para la expresión de la proteína hepática del sustrato 1 del receptor de insulina (IRS1), factor nuclear eritroide 2 relacionado con el factor 2 (Nrf2), factor de necrosis tumoral alfa (TNF-α) y caspasa-3 pancreática. Las ratas NAFLD (grupo III) desarrollaron esteatosis hepática con aumento de la acumulación de lípidos, fibrosis perisinusoidal, IRS1 y TNF-α regulados positivamente (todos P <0,05) sin un aumento significativo en la expresión de la proteína Nrf2 en comparación con el control normal. En comparación, las ratas modelo tratadas con zarzio (grupo IV) mostraron un rejuvenecimiento significativo de la arquitectura hepática, una reducción de la acumulación de grasa y fibrosis. Esto estuvo acompañado por la regulación positiva de Nrf2, la regulación negativa de la expresión de la proteína IRS1 y TNF-α (todas P <0,05). No se detectó correlación entre NAFLD y la enfermedad del páncreas graso no alcohólico (NAFPD). Sin embargo, las células β pancreáticas en el grupo III mostraron una mayor expresión de caspasa-3, que disminuyó (P <0,05) en el grupo IV. En conclusión, zarzio mejora la NAFLD al mejorar la capacidad antioxidante de las células hepáticas, reduciendo el IRS1 hepático, la expresión de la proteína TNF-α y la apoptosis de las células β pancreáticas, lo que sugiere que zarzio podría usarse como una terapia potencial para la NAFLD.


Subject(s)
Animals , Male , Rats , Granulocyte Colony-Stimulating Factor/administration & dosage , Biosimilar Pharmaceuticals/administration & dosage , Non-alcoholic Fatty Liver Disease/drug therapy , Immunohistochemistry , Tumor Necrosis Factor-alpha/drug effects , Disease Models, Animal , Insulin-Secreting Cells/drug effects , NF-E2-Related Factor 2 , Caspase 3 , Diet, High-Fat/adverse effects
14.
Braz. J. Anesth. (Impr.) ; 73(2): 177-185, March-Apr. 2023. graf
Article in English | LILACS | ID: biblio-1439592

ABSTRACT

Abstract Background The precise underlying mechanism of antioxidant effects of dexmedetomidine-induced neuroprotection against cerebral ischemia has not yet been fully elucidated. Activation of Nuclear factor erythroid 2-related factor (Nrf2) and Heme Oxygenase-1 (HO-1) represents a major antioxidant-defense mechanism. Therefore, we determined whether dexmedetomidine increases Nrf2/HO-1 expression after global transient cerebral ischemia and assessed the involvement of Protein Kinase C (PKC) in the dexmedetomidine-related antioxidant mechanism. Methods Thirty-eight rats were randomly assigned to five groups: sham (n = 6), ischemic (n = 8), chelerythrine (a PKC inhibitor; 5 mg.kg-1 IV administered 30 min before cerebral ischemia) (n = 8), dexmedetomidine (100 µg.kg-1 IP administered 30 min before cerebral ischemia (n = 8), and dexmedetomidine + chelerythrine (n = 8). Global transient cerebral ischemia (10 min) was applied in all groups, except the sham group; histopathologic changes and levels of nuclear Nrf2 and cytoplasmic HO-1 were examined 24 hours after ischemia insult. Results We found fewer necrotic and apoptotic cells in the dexmedetomidine group relative to the ischemic group (p< 0.01) and significantly higher Nrf2 and HO-1 levels in the dexmedetomidine group than in the ischemic group (p< 0.01). Additionally, chelerythrine co-administration with dexmedetomidine attenuated the dexmedetomidine-induced increases in Nrf2 and HO-1 levels (p< 0.05 and p< 0.01, respectively) and diminished its beneficial neuroprotective effects. Conclusion Preischemic dexmedetomidine administration elicited neuroprotection against global transient cerebral ischemia in rats by increasing Nrf2/HO-1 expression partly via PKC signaling, suggesting that this is the antioxidant mechanism underlying dexmedetomidine-mediated neuroprotection.


Subject(s)
Animals , Rats , Reperfusion Injury/prevention & control , Brain Ischemia , Protein Kinase C/metabolism , Protein Kinase C/pharmacology , Ischemic Attack, Transient , Oxidative Stress , Neuroprotective Agents/pharmacology , Dexmedetomidine/pharmacology , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/pharmacology , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/pharmacology , Heme Oxygenase (Decyclizing)/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology
15.
Arq. bras. oftalmol ; 86(2): 178-187, Mar.-Apr. 2023. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1429834

ABSTRACT

ABSTRACT After the discovery of anti-vascular endothelial growth factor agents as treatment of wet age-related macular degeneration, the number of studies with the objective to understand the molecular mechanisms involved in the age-re lated macular degeneration genesis has increased. The importance of the nuclear factor e2-related factor 2 lies in its activation-derived proteins being involved in the maintenance of the redox balance and consequent prevention of degenerative macular disease. This article aims to present the characteristics of nuclear factor e2-related factor 2 and describe the main nuclear factor e2-related factor 2-activated antioxidant enzymes that contribute to the preservation of vision.


RESUMO Após a descoberta do anti fator de crescimento en dotelial vascular no tratamento da degeneração macular relacionada à idade úmida, muitas pesquisas têm sido realizadas com o intuito de elucidar os mecanismos moleculares envolvidos na gênese da degeneração macular relacionada à idade. O fator nuclear eritroide 2 relacionado ao fator 2 destaca-se pelo fato de diversas proteínas, oriundas de sua ativação, estarem envolvidas na manutenção do equilíbrio do estado redox e consequente prevenção da doença macular degenerativa. Este artigo mostra as características do fator nuclear eritroide 2 relacionado ao fator 2 e descreve as principais enzimas antioxidantes originadas da ativação que contribuem para a preservação da visão.

16.
China Pharmacy ; (12): 2880-2885, 2023.
Article in Chinese | WPRIM | ID: wpr-999221

ABSTRACT

OBJECTIVE To study the effect and potential mechanism of eriodictyol on non-alcoholic fatty liver disease (NAFLD). METHODS Sixteen C57BL/6J mice were randomly divided into control group, NAFLD model group, and eriodictyol low-dose and high-dose groups (50, 100 mg/kg), with 4 mice in each group. Except for control group, the other groups were fed with high fat diet to induce NAFLD model. After four weeks of preprocessing, they were given relevant medicine intraperitoneally (0.01 mL/g), once a day, for 6 consecutive weeks. The body weight and liver weight of mice were measured, and the pathological damage of liver tissue in mice was observed. The levels of aspartate aminotransferase (AST), alanine aminotransferase(ALT), and triglycerides (TG) in serum, as well as the protein expressions of nuclear factor-erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in liver tissue were determined. In vitro NAFLD model was established by using 0.5 mmol/L oleic acid (OA) in HepG2 cells. Normal control group, NAFLD model group and eriodictyol low-, medium- and high-concentration groups (50, 100, 150 μmol/L) were set up. HepG2 cells in drug groups were treated with eriodictyol for 24 h at the time of modeling. The lipid deposition was observed in cells, and the levels of TG, malondialdehyde (MDA) and reactive oxygen species (ROS) as well as the phosphorylation levels of the mitogen-activated protein kinase (MAPK) signal pathway related proteins [extracellular signal-regulated kinase (ERK), c- Jun N-terminal kinase (JNK)] and the protein expressions of Nrf2 and HO-1 were all determined. RESULTS In the in vivo experiment, compared with the NAFLD model group, the body weight, liver weight, the serum levels of AST, ALT and TG were all decreased significantly in eriodictyol low- and high-dose groups (except for serum level of AST in eriodictyol low-dose group) (P<0.01); liver lipid deposition was reduced significantly and the protein expressions of Nrf2 and HO-1 in liver tissues were further up-regulated (P<0.01). In the in vitro experiment, compared with the NAFLD model group, the lipid deposition in hepatocytes was reduced in eriodictyol low-, medium- and high-concentration groups (P<0.01), and the levels of ROS, MDA and TG were down-regulated (P<0.05 or P<0.01); the phosphorylation levels of ERK and JNK were significantly down-regulated (P<0.01), while the protein expressions of Nrf2 and HO-1 were up-regulated significantly (P<0.01). CONCLUSIONS Eriodictyol can inhibit MAPK signaling pathway and activate Nrf2/HO-1 signaling pathway to alleviate NAFLD.

17.
Journal of Clinical Hepatology ; (12): 2643-2650, 2023.
Article in Chinese | WPRIM | ID: wpr-998821

ABSTRACT

‍ ObjectiveTo investigate the protective effect of safranal against sepsis-related liver injury (SRLI) induced by lipopolysaccharide (LPS) in mice and its mechanism. MethodsA total of 32 experimental male C57BL/6 mice were divided into control group, single drug group, model group, and treatment group using the simple random method, with 8 mice in each group. The mice in the single drug group and the treatment group were intraperitoneally injected with safranal (60 mg/kg) for 7 days of pretreatment, and the mice in the model group and the treatment group were intraperitoneally injected with LPS (10 mg/kg) to induce acute liver injury. The activities of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured; HE staining was used to observe liver tissue sections; immunohistochemistry was used to analyze the expression of the downstream protein heme oxygenase-1 (HO-1) in the signal pathway; TUNEL was used to analyze the apoptosis of hepatocytes; Western blot was used to measure the expression of total proteins (nuclear factor erythroid 2-related factor 2 [Nrf-2] and HO-1) in liver tissue. The human liver cell line L02 was pretreated with safranal (100 μmol/L), followed by induction of acute hepatocellular injury with LPS (100 ng/mL), and DCFH-DA fluorescent labeling was used to detect reactive oxygen species (ROS). ResultsAfter safranal pretreatment, the treatment group had significantly lower levels of ALT and AST than the model group (both P<0.001), with a relatively intact pseudolobular structure and a smaller necrotic area in the liver. Compared with the model group, the treatment group had significant increases in the expression levels of Nrf2 and HO-1 in liver tissue after safranal+LPS treatment (both P<0.001), and immunohistochemistry showed that safranal pretreatment increased the number of HO-1-positive cells. In the cell model of LPS-induced acute liver injury, the treatment group had a significant reduction in the production of ROS compared with the model group. ConclusionSafranal can exert a protective effect against SRLI induced by LPS in mice through the Nrf2/HO-1 pathway.

18.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 248-255, 2023.
Article in Chinese | WPRIM | ID: wpr-975178

ABSTRACT

Myocardial infarction (MI) is a common cardiovascular disease in clinical practice and one of the main causes of cardiovascular mortality. Its pathogenesis is complex and associated with oxidative stress reactions. Nuclear factor E2-related factor 2 (Nrf2) is a key factor in regulating oxidative stress reactions. It can regulate the expression of heme oxygenase-1 (HO-1), playing a role in maintaining the oxidative-reductive homeostasis in the body. During the course of MI, the biological activity and levels of Nrf2 and HO-1 decrease, leading to weakened tissue antioxidant and anti-inflammatory capabilities, endothelial damage in myocardial blood vessels, release of vascular cell adhesion factors, and impaired endothelial function. In recent years, many basic research studies have explored the role and mechanisms of traditional Chinese medicine (TCM) in treating MI by modulating the Nrf2/HO-1 signaling pathway. The results have indicated that the Nrf2/HO-1 signaling pathway is an important potential target for TCM in the treatment of MI. This article reviewed the mechanism of the Nrf2/HO-1 signaling pathway in MI and the research progress of TCM in targeting and regulating this pathway, aiming to provide a theoretical basis for the prevention and treatment of MI and further drug development.

19.
Organ Transplantation ; (6): 656-661, 2023.
Article in Chinese | WPRIM | ID: wpr-987115

ABSTRACT

Renal ischemia-reperfusion injury (RIRI) is the main cause of acute kidney injury (AKI), which commonly occurs in surgery, severe trauma, shock and drug-induced kidney injury. At present, effective treatment for RIRI is still lacking. Oxidative stress is the major pathological injury mechanism of RIRI. Nuclear factor E2-related factor 2 (Nrf2) is the key transcription factor of anti-oxidative stress response, which may activate various cytoprotective genes related to redox and detoxification. Recent studies have shown that Nrf2 may play a protective role in the protection and treatment of RIRI by regulating oxidative stress, inflammation, cell apoptosis and autophagy, etc. Consequently, the structure and biological function of Nrf2, related signaling pathways, its role in the incidence and development of RIRI and potential mechanism were reviewed in this article, aiming to provide novel ideas for the prevention and treatment of RIRI.

20.
Chinese Journal of Oncology ; (12): 129-137, 2023.
Article in Chinese | WPRIM | ID: wpr-969815

ABSTRACT

Objective: To investigate the effect of ubiquitin mutation at position 331 of tumor necrosis factor receptor related factor 6 (TRAF6) on the biological characteristics of colorectal cancer cells and its mechanism. Methods: lentivirus wild type (pCDH-3×FLAG-TRAF6) and mutation (pCDH-3×FLAG-TRAF6-331mut) of TRAF6 gene expression plasmid with green fluorescent protein tag were used to infect colorectal cancer cells SW480 and HCT116, respectively. The infection was observed by fluorescence microscope, and the expressions of TRAF6 and TRAF6-331mut in cells was detected by western blot. Cell counting kit-8 (CCK-8) and plate cloning test were used to detect the proliferation ability of colorectal cancer cells in TRAF6 group and TRAF6-331mut group, cell scratch test to detect cell migration, Transwell chamber test to detect cell migration and invasion, immunoprecipitation to detect the ubiquitination of TRAF6 and TRAF6-331mut with ubiquitinof lysine binding sites K48 and K63. Western blot was used to detect the effects of TRAF6 and TRAF6-331mut over expression on the nuclear factor kappa-B (NF-κB) and mitogen activated protein kinase mitogen-activated protein kinase (MAPK)/activating protein-1(AP-1) signal pathway. Results: The successful infection of colorectal cancer cells was observed under fluorescence microscope. Western blot detection showed that TRAF6 and TRAF6-331mut were successfully expressed in colorectal cancer cells. The results of CCK-8 assay showed that on the fourth day, the absorbance values of HCT116 and SW480 cells in TRAF6-331mut group were 1.89±0.39 and 1.88±0.24 respectively, which were lower than those in TRAF6 group (2.09±0.12 and 2.17±0.45, P=0.036 and P=0.011, respectively). The results of plate colony formation assay showed that the number of clones of HCT116 and SW480 cells in TRAF6-331mut group was 120±14 and 85±14 respectively, which was lower than those in TRAF6 group (190±21 and 125±13, P=0.001 and P=0.002, respectively). The results of cell scratch test showed that after 48 hours, the percentage of wound healing distance of HCT116 and SW480 cells in TRAF6-331mut group was (31±12)% and (33±14)%, respectively, which was lower than those in TRAF6 group [(43±13)% and (43±7)%, P=0.005 and 0.009, respectively]. The results of Transwell migration assay showed that the migration numbers of HCT116 and SW480 cells in TRAF6-331mut group were significantly lower than those in TRAF6 group (P<0.001 and P<0.002, respectively). The results of Transwell invasion assay showed that the number of membrane penetration of HCT116 and SW480 cells in TRAF6-331mut group was significantly lower than those in TRAF6 group (P=0.008 and P=0.009, respectively). The results of immunoprecipitation detection showed that the ubiquitin protein of K48 chain pulled by TRAF6-331mut was lower than that of wild type TRAF6 in 293T cells co-transfected with K48 (0.57±0.19), and the ubiquitin protein of K63 chain pulled down by TRAF6-331mut in 293T cells co-transfected with K63 was lower than that of wild type TRAF6 (0.89±0.08, P<0.001). Western blot assay showed that the protein expression levels of NF-κB, p-NF-κB and p-AP-1 in TRAF6-331mut-HCT116 cells were 0.63±0.08, 0.42±0.08 and 0.60±0.07 respectively, which were lower than those in TRAF6-HCT116 cells (P=0.002, P<0.001 and P<0.001, respectively). The expression level of AP-1 protein in TRAF6-HCT116 cells was 0.89±0.06, compared with that in TRAF6-HCT116 cells. The difference was not statistically significant (P>0.05). The protein expression levels of NF-κB, p-NF-κB and p-AP-1 in TRAF6-331mut-SW480 cells were 0.50±0.06, 0.51±0.04, 0.48±0.02, respectively, which were lower than those in TRAF6-SW480 cells (all P<0.001). There was no significant difference in AP-1 protein expression between TRAF6-331mut-SW480 cells and TRAF6-SW480 cells. Conclusion: The ubiquitin site mutation of TRAF6 gene at 331 may prevent the binding of TRAF6 and ubiquitin lysine sites K48 and K63, and then affect the expressions of proteins related to downstream NF-κB and MAPK/AP-1 signal pathways, and inhibit the proliferation, migration and invasion of colorectal cancer cells.


Subject(s)
Humans , Cell Line, Tumor , Cell Movement , Cell Proliferation , Colorectal Neoplasms/pathology , Lysine/metabolism , NF-kappa B/metabolism , TNF Receptor-Associated Factor 6/metabolism , Transcription Factor AP-1/metabolism , Ubiquitin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL