Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Article | IMSEAR | ID: sea-204840

ABSTRACT

Climate change poses significant threats to global food security and water resources. In a present study, a Global Climate Model HAD GEM2-ES under RCPs 4.5 and 8.5 was used for climate prediction study. The study spanned 46 years of baseline (1970-2015) as well as two future periods’ mid-century (MC) (2020-2050) and end century EC (2060-2090). The results showed that the temperature would increase by 1.56°C and rainfall would decrease by 98 mm in MC (2020-2050); and 3.11°C and 90 mm in EC (2060-2090), respectively under RCP 4.5. In RCP 8.5 the increase in temperature and rainfall was 2.75°C and 153 mm, respectively in MC and the corresponding values in EC was 5.46°C and 251 mm, respectively.

2.
Biomedical and Environmental Sciences ; (12): 134-139, 2019.
Article in English | WPRIM | ID: wpr-773425

ABSTRACT

The health effects of climatic changes constitute an important research area, yet few researchers have reported city- or region-specific projections of temperature-related deaths based on assumptions about mitigation and adaptation. Herein, we provide quantitative projections for the number of additional deaths expected in the future, owing to the cold and heat in the city of Nanjing, China, based on 31 global circulation models (GCMs), two representative concentration pathways (RCPs) (RCP4.5 and RCP8.5), and three population scenarios [a constant scenario and two shared socioeconomic pathways (SSPs) (SSP2 and SSP5)], for the periods of 2010-2039, 2040-2069, and 2070-2099. The results show that for the period 2070-2099, the net number of temperature-related deaths can be comparable in the cases of RCP4.5/SSP2 and RCP8.5/SSP5 owing to the offsetting effects attributed to the increase of heat related deaths and the decrease of cold-related deaths. In consideration of this adaptation, we suggest that RCP4.5/SSP2 is a better future development pathway/scenario.


Subject(s)
Humans , China , Epidemiology , Cities , Epidemiology , Climate Change , Linear Models , Mortality , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL