Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Journal of Medical Biomechanics ; (6): E375-E381, 2023.
Article in Chinese | WPRIM | ID: wpr-987961

ABSTRACT

Objective To propose a new multi-joint series venipuncture system, explore the mechanics and kinematics-based related control problems involved in needle insertion and needle picking during the puncture process, and verify feasibility of this system. Methods A puncture manipulator was built, and needle displacement control algorithm was proposed by combing with the puncture mechanics model. The the forward kinematics was calculated by using DH method, so as to obtain the tip coordinates. Then the inverse kinematics was calculated by using the geometric method. The forward and inverse processes were closely connected. The position error of the end coordinates before and after needle picking was compared by using the method of kinematics positive solution-inverse solution-re-positive solution. Finally, experimental verification and simulation were conducted by combining with the physical object. Results Through simulation and experiments, accuracy of the theoretical model was verified. The needle insertion algorithm could be used to achieve success with only one needle insertion, which provided theoretical basis for the control of robot arm. The position error before and after needle picking could be controlled within 1 mm from the end trajectory. The end needle tip of robot arm was almost kept fixed during the needle picking process. Therefore, this needle picking scheme was feasible and could basically verify that the needle picking action of robot arm met the accuracy and safety requirements. Conclusions The venipuncture manipulator truly simulates the needle insertion and needle picking action during the puncture process, and can safely and accurately realize the needle insertion and needle picking action with needle tip as the fixed point, indicating that it has certain clinical value.

2.
Journal of Medical Biomechanics ; (6): E171-E177, 2013.
Article in Chinese | WPRIM | ID: wpr-804207

ABSTRACT

Objective To establish a new trajectory tracking algorithm combined with trapezoidal velocity, so as to realize the trajectory control of the assistive standing-up robot and help subjects complete the standing-up training. Methods Forces of the assistive standing-up robot acting on subjects were analyzed by deducing the force and moment balance equations. According to the interpolation points of the target curve, trapezoidal velocity and current position points of the end-effector, the trajectory tracking algorithm of the assistive standing-up robot was developed, and a simulation platform was built up by Simulink/Stateflow software. Based on the established Xpc target and host computer, assistive standing-up robot and 3D motion analysis system, trajectory tracking of the straight line, curves in different shapes, standing-up curve of the subjects were tested. Parameters that affected the velocity and accuracy of trajectory tracking as well as the differences in trapezoidal velocity and standing-up velocity were discovered. Results Accurate positon control of the assistive standing-up robot was achieved by trajectory tracking algorithm. The standing-up trajectory curve and trapezoidal velocity could meet the requirement of standing-up velocity for the subjects and fulfill their requirements for different curve shapes and velocities. Conclusions The assistive standing-up robot using trajectory tracking algorithm combined with trapezoidal velocity can accurately track the target curves without limitation of curve shapes, and help the standing-up training for subjects. The established simulation and test platform in consideration of different subjects’ standing-up trajectory curve, velocity and accelaraion will assist standing-up more effectively.

SELECTION OF CITATIONS
SEARCH DETAIL