Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Journal of Biomedical Engineering ; (6): 131-138, 2018.
Article in Chinese | WPRIM | ID: wpr-771108

ABSTRACT

A fitting method of calculating local helix parameters of proteins based on dual quaternions registration fitting (DQRFit) is proposed in this paper. First, the C and N atom coordinates of each residue in the protein structure data are extracted. Then the unregistered data and reference data are constructed using the sliding windows. The square sum of the distance of the data points before and after registration is regarded as an optimization goal. We calculate the optimal rotation matrix and the translation vector using the dual quaternion registration algorithm, and get the helix parameters of the secondary structure which contain the number of residues per turn( ), helix radius( )and helix pitch( ). Furthermore, we can achieve the fitting of three-helix parameters of , , simultaneously with the dual quaternion registration, and can adjust the sliding windows to adapt to different error levels. Compared with the traditional helix fitting method, DQRFit has some advantages such as low computational complexity, strong anti-interference, and high fitting accuracy. It is proven that the precision of proposed DQRFit for α helix detection is comparable to that of the dictionary of secondary structure of proteins (DSSP), and is better than that of other traditional methods. This is of great significance for the protein structure classification and functional prediction, drug design, protein structure visualization and other fields in the future.

2.
Genomics & Informatics ; : 155-160, 2013.
Article in English | WPRIM | ID: wpr-58520

ABSTRACT

Structural information has been a major concern for biological and pharmaceutical studies for its intimate relationship to the function of a protein. Three-dimensional representation of the positions of protein atoms is utilized among many structural information repositories that have been published. The reliability of the torsional system, which represents the native processes of structural change in the structural analysis, was partially proven with previous structural alignment studies. Here, a web server providing structural information and analysis based on the backbone torsional representation of a protein structure is newly introduced. The web server offers functions of secondary structure database search, secondary structure calculation, and pair-wise protein structure comparison, based on a backbone torsion angle representation system. Application of the implementation in pair-wise structural alignment showed highly accurate results. The information derived from this web server might be further utilized in the field of ab initio protein structure modeling or protein homology-related analyses.


Subject(s)
Databases, Protein , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL