Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Acta Pharmaceutica Sinica ; (12): 600-607, 2024.
Article in Chinese | WPRIM | ID: wpr-1016634

ABSTRACT

The coronavirus disease 2019 (COVID-19) is an acute infectious disease caused by the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which has led to serious worldwide economic burden. Due to the continuous emergence of variants, vaccines and monoclonal antibodies are only partial effective against infections caused by distinct strains of SARS-CoV-2. Therefore, it is still of great importance to call for the development of broad-spectrum and effective small molecule drugs to combat both current and future outbreaks triggered by SARS-CoV-2. Cathepsin L (CatL) cleaves the spike glycoprotein (S) of SARS-CoV-2, playing an indispensable role in enhancing virus entry into host cells. Therefore CatL is one of the ideal targets for the development of pan-coronavirus inhibitor-based drugs. In this study, a CatL enzyme inhibitor screening model was established based on fluorescein labeled substrate. Two CatL inhibitors IMB 6290 and IMB 8014 with low cytotoxicity were obtained through high-throughput screening, the half inhibition concentrations (IC50) of which were 11.53 ± 0.68 and 1.56 ± 1.10 μmol·L-1, respectively. SDS-PAGE and cell-cell fusion experiments confirmed that the compounds inhibited the hydrolysis of S protein by CatL in a concentration-dependent manner. Surface plasmon resonance (SPR) detection showed that both compounds exhibited moderate binding affinity with CatL. Molecular docking revealed the binding mode between the compound and the CatL active pocket. The pseudovirus experiment further confirmed the inhibitory effects of IMB 8014 on the S protein mediated entry process. In vitro pharmacokinetic evaluation indicated that the compounds had relatively good drug-likeness properties. Our research suggested that these two compounds have the potential to be further developed as antiviral drugs for COVID-19 treatment.

2.
Journal of Pharmaceutical Analysis ; (6): 545-562, 2023.
Article in Chinese | WPRIM | ID: wpr-991165

ABSTRACT

As a ligand-dependent transcription factor,retinoid-associated orphan receptor γt(RORyt)that controls T helper(Th)17 cell differentiation and interleukin(IL)-17 expression plays a critical role in the pro-gression of several inflammatory and autoimmune conditions.An emerging novel approach to the therapy of these diseases thus involves controlling the transcriptional capacity of RORyt to decrease Th17 cell development and IL-17 production.Several RORyt inhibitors including both antagonists and inverse agonists have been discovered to regulate the transcriptional activity of RORyt by binding to orthosteric-or allosteric-binding sites in the ligand-binding domain.Some of small-molecule inhibitors have entered clinical evaluations.Therefore,in current review,the role of RORyt in Th17 regulation and Th17-related inflammatory and autoimmune diseases was highlighted.Notably,the recently developed RORyt inhibitors were summarized,with an emphasis on their optimization from lead compounds,ef-ficacy,toxicity,mechanisms of action,and clinical trials.The limitations of current development in this area were also discussed to facilitate future research.

3.
Acta Pharmaceutica Sinica B ; (6): 4748-4764, 2023.
Article in English | WPRIM | ID: wpr-1011204

ABSTRACT

Glioblastoma (GBM) is the most common and aggressive malignant brain tumor in adults and is poorly controlled. Previous studies have shown that both macrophages and angiogenesis play significant roles in GBM progression, and co-targeting of CSF1R and VEGFR is likely to be an effective strategy for GBM treatment. Therefore, this study developed a novel and selective inhibitor of CSF1R and VEGFR, SYHA1813, possessing potent antitumor activity against GBM. SYHA1813 inhibited VEGFR and CSF1R kinase activities with high potency and selectivity and thus blocked the cell viability of HUVECs and macrophages and exhibited anti-angiogenetic effects both in vitro and in vivo. SYHA1813 also displayed potent in vivo antitumor activity against GBM in immune-competent and immune-deficient mouse models, including temozolomide (TMZ) insensitive tumors. Notably, SYHA1813 could penetrate the blood-brain barrier (BBB) and prolong the survival time of mice bearing intracranial GBM xenografts. Moreover, SYHA1813 treatment resulted in a synergistic antitumor efficacy in combination with the PD-1 antibody. As a clinical proof of concept, SYHA1813 achieved confirmed responses in patients with recurrent GBM in an ongoing first-in-human phase I trial. The data of this study support the rationale for an ongoing phase I clinical study (ChiCTR2100045380).

4.
Acta Pharmaceutica Sinica B ; (6): 4341-4372, 2023.
Article in English | WPRIM | ID: wpr-1011195

ABSTRACT

Ubiquitin (Ub) and ubiquitin-like (Ubl) pathways are critical post-translational modifications that determine whether functional proteins are degraded or activated/inactivated. To date, >600 associated enzymes have been reported that comprise a hierarchical task network (e.g., E1-E2-E3 cascade enzymatic reaction and deubiquitination) to modulate substrates, including enormous oncoproteins and tumor-suppressive proteins. Several strategies, such as classical biochemical approaches, multiomics, and clinical sample analysis, were combined to elucidate the functional relations between these enzymes and tumors. In this regard, the fundamental advances and follow-on drug discoveries have been crucial in providing vital information concerning contemporary translational efforts to tailor individualized treatment by targeting Ub and Ubl pathways. Correspondingly, emphasizing the current progress of Ub-related pathways as therapeutic targets in cancer is deemed essential. In the present review, we summarize and discuss the functions, clinical significance, and regulatory mechanisms of Ub and Ubl pathways in tumorigenesis as well as the current progress of small-molecular drug discovery. In particular, multiomics analyses were integrated to delineate the complexity of Ub and Ubl modifications for cancer therapy. The present review will provide a focused and up-to-date overview for the researchers to pursue further studies regarding the Ub and Ubl pathways targeted anticancer strategies.

5.
Acta Pharmaceutica Sinica B ; (6): 3181-3207, 2023.
Article in English | WPRIM | ID: wpr-1011126

ABSTRACT

Serine/arginine-rich splicing factors (SRSFs) refer to twelve RNA-binding proteins which regulate splice site recognition and spliceosome assembly during precursor messenger RNA splicing. SRSFs also participate in other RNA metabolic events, such as transcription, translation and nonsense-mediated decay, during their shuttling between nucleus and cytoplasm, making them indispensable for genome diversity and cellular activity. Of note, aberrant SRSF expression and/or mutations elicit fallacies in gene splicing, leading to the generation of pathogenic gene and protein isoforms, which highlights the therapeutic potential of targeting SRSF to treat diseases. In this review, we updated current understanding of SRSF structures and functions in RNA metabolism. Next, we analyzed SRSF-induced aberrant gene expression and their pathogenic outcomes in cancers and non-tumor diseases. The development of some well-characterized SRSF inhibitors was discussed in detail. We hope this review will contribute to future studies of SRSF functions and drug development targeting SRSFs.

6.
Acta Pharmaceutica Sinica ; (12): 27-38, 2023.
Article in Chinese | WPRIM | ID: wpr-964296

ABSTRACT

Interleukin-1 receptor associated kinase 4 (IRAK-4), acting as a serine threonine kinase, is considered as a key signal node for the transduction of IL-1R family and TLRs signal pathway. Studies have found that IRAK-4 has a hand in many signal pathways, involving the inflammatory response of human joints, intestines, liver and nervous system, as well as other autoimmune diseases. It is also one of the causes of drug resistance of some cancer cells. Therefore, IRAK-4 tends to be an effective therapeutic target for inflammatory diseases and cancer. The prospects for the development of drugs in this pathway is to develop novel IRAK-4 small molecule inhibitors and investigate their safety and effectiveness, enrich the clinical treatment of inflammatory and cancer diseases finally. This paper classified and summarized the latest research progress on small molecule inhibitors of IRAK-4 signaling pathway according to structures of the compounds, in order to provide assistances and references for the research and development of related drugs.

7.
China Pharmacy ; (12): 2085-2089, 2023.
Article in Chinese | WPRIM | ID: wpr-987136

ABSTRACT

OBJECTIVE To study the pharmacokinetics of small molecule inhibitor SYHA1809 in Beagle dogs. METHODS LC-MS/MS method was adopted. Beagle dogs were randomly divided into single intravenous administration group (3.75 mg/kg), single low-dose intragastric administration group (3.75 mg/kg), single medium-dose intragastric administration group (7.5 mg/kg), single high-dose intragastric administration group (15 mg/kg) and multiple intragastric administration group (7.5 mg/kg, once a day, for 7 consecutive days), with 6 dogs in each group, half male and half female. The plasma samples of Beagle dogs were collected in each group according to the set time point, and underwent LC-MS/MS quantitative analysis after preprocessing. The pharmacokinetic parameters were calculated by using Phoenix WinNonlin 8.0 software using obtained data. RESULTS After intravenous injection, CL of SYHA1809 in Beagle dogs was (2.70±0.48) mL/(min·kg), steady-state distribution volume was 0.757 L/kg, and t1/2 was (3.35±1.36) h; after single intragastric administration of low-dose, medium-dose and high-dose of SYHA1809, average tmax was (0.53±0.02) h, and the blood drug concentration increased with the increase of dose; after single intragastric administration of 3.75 mg/kg SYHA1809, the absolute bioavailability was 83.5%; within the dose range of 3.75-15 mg/kg, the increase in cmax and AUC of SYHA1809 was positively correlated with the dose; after intragastric administration of 7.5 mg/kg SYHA1809 for 7 consecutive days, the pharmacokinetic parameters of SYHA1809 were comparable to those of a single intragastric administration of the same dose, with no statistically significant difference (P>0.05). CONCLUSIONS SYHA1809 is absorbed rapidly in Beagle dogs, shows the dose-dependent blood concentration, high bioavailability, no obvious accumulation after multiple intragastric administration, and good pharmacokinetic behavior.

8.
Acta Pharmaceutica Sinica ; (12): 3254-3269, 2023.
Article in Chinese | WPRIM | ID: wpr-999070

ABSTRACT

Hemagglutinin and neuraminidase, two important glycoproteins on the surface of influenza virus, play a considerable role in the entry and release stage of the viral life cycle, respectively. With in-depth investigation of influenza virus glycoproteins and the continuous innovation of drug discovery strategies, a new generation of glycoproteins inhibitors have been continuously discovered. From the point of view of medicinal chemistry, this review summarizes the current advances in seeking small-molecule inhibitors targeting influenza virus glycoproteins, hoping to provide valuable guidance for future development of novel antiviral drugs.

9.
Journal of China Pharmaceutical University ; (6): 125-136, 2022.
Article in Chinese | WPRIM | ID: wpr-923487

ABSTRACT

@#Mixed lineage leukemia 1(MLL1) is a member of the "SET" histone methyltransferases family.MLL1 methyltransferase complex, consisting of MLL1, WDR5, RbBP5, Ash2L and DPY-30, regulates methylation level of histone H3 lysine 4 and is essential for the development of human hematopoietic system and self-renewal of blood cells.As an oncogenic protein produced by the translocation of MLL1 gene, the MLL1 fusion protein has been found in some patients with leukemia.Complete MLL1 enzyme complex is required to perform histone demethylation effect, therefore, targeting the protein-protein interaction of MLL1-WDR5 has become a potential strategy for the treatment of leukemia induced by MLL1 fusion protein.This review systematically summarizes the biological mechanism, structural information and inhibitors of MLL1-WDR5 protein-protein interaction, with a perspective based on previously reported data, aiming to provide some reference for further investigation.

10.
Acta Pharmaceutica Sinica ; (12): 2671-2681, 2022.
Article in Chinese | WPRIM | ID: wpr-941504

ABSTRACT

The carbamoyl phosphate synthase 1 (CPS1) enzyme is involved in the first phase of the urea cycle, providing a prerequisite molecule for pyrimidine synthesis, as well as promoting tumor cell proliferation and growth. Studies have found that CPS1 is highly expressed in a variety of tumors, including colorectal cancer, lung cancer, etc. and its overexpression is related to the poor prognosis of tumors. Thus, small molecules targeted to inhibit the function of CPS1 in tumors may provide therapeutic benefits for cancer patients who overexpress CPS1. In this study, the function of CPS1 was investigated in vitro, and we found that overexpression of CPS1 can enhance the migration ability of colorectal cancer cells HCT15. Here, based upon the existing crystal structure, combined with high-throughput virtual screening, we obtained 8 candidate small molecule compounds. In vitro activity evaluation, we found that compound 3 has good anti-HCT15, HCT116 cell proliferation activity (HCT15, IC50, 7.69 ± 1.10 μmol‧L-1, HCT116, IC50, 13.53 ± 0.46 μmol‧L-1). Subsequently, molecular docking and molecular dynamics (MD) simulation analysis showed that, compound 3 could target and inhibit the activity of CPS1. In vitro studies showed that compound 3 could inhibit the migration of HCT15 cells, as well as induced cell cycle arrest and apoptosis. Taken together, this study found that compound 3 is a potential small molecule inhibitor that targets CPS1, which provides the experimental basis and theoretical basis for the development of targeted intervention small molecule therapeutic drugs. Based upon the chemical structure of compound 3, we will shed new light on further optimizing its activity and therapeutic potential, which may provide a therapeutic benefit to the patients with CPS1-related tumors.

11.
Chinese Journal of Clinical Pharmacology and Therapeutics ; (12): 144-153, 2022.
Article in Chinese | WPRIM | ID: wpr-1014891

ABSTRACT

AIM: To explore the effect of Bcl-2 small molecule inhibitor ABT-737 on the growth and angiogenesis mimicry of SKOV3 cells in a co-culture system of Tumour-associated macrophages (TAMs) and human ovarian cancer cells SKOV3. METHODS: PMA and IL-4 was used to induce THP-1 cells into TAMs cells in vitro; MTT method was used to detect the cell survival rate of SKOV3 cells after 24 hours of treatment with different concentrations of ABT-737 culture medium; a co-culture system of SKOV3 cells and TAMs cells was established; the experimental groups were divided into control group, SKOV3+ABT-737 group (containing 5.0 μmol/L ABT-737 cultured cells), TAMs+SKOV3 group (SKOV3 cells co-cultured with TAMs cells), TAMs+SKOV3+ABT-737 group (SKOV3 cells Co-cultured with TAMs cells, and added ABT-737 containing 5.0 μmol/L), cells after 24 h was collected, MTT method was used to detect cell survival rate, EdU staining for cell proliferation, ranswell chamber experiment for cell migration and invasion, Flowcytometry for cell apoptosis, the vascular mimicry experiment for the ability of cells to form blood vessels, Western blot for the expression of vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP-2) and MMP-9 in cells. RESULTS: THP-1 cells were successfully induced for TAMs cells; the survival rate of SKOV3 cells decreased under the action of ABT-737 (P<0.01); compared with the control group, the survival rate of SKOV3 cells in the SKOV3+ABT-737 group decreased, the number of EdU-labeled positive cells decreased, the number of cell migration and invasion also decreased, the rate of apoptosis increased, and the duct branches decreased, The protein expression of VEGF, MMP-2, MMP-9 decreased (P<0.01); Compared with the TAMs+SKOV3 group, the cell survival rate of the TAMs+SKOV3+ABT-737 group decreased, the number of EdU-labeled positive cells and the number of cell migration and invasion also decreased, the apoptosis rate increased, and the duct branches decreased. At the same time, the protein expression of VEGF, MMP-2, MMP-9 decreased (P<0.01). CONCLUSION: ABT-737 can inhibit SKOV3 cell proliferation, metastasis, apoptosis and angiogenesis in a co-culture system, and affect tumor progression.

12.
Journal of Experimental Hematology ; (6): 695-703, 2022.
Article in Chinese | WPRIM | ID: wpr-939677

ABSTRACT

AbstractObjective: To explore the effect and mechanism of curcumin on human T-cell acute lymphoblastic leukemia (T-ALL) cell apoptosis induced by Mcl-1 small molecule inhibitors UMI-77.@*METHODS@#T-ALL cell line Molt-4 was cultured, and the cells were treated with different concentrations of curcumin and Mcl-1 small molecule inhibitor UMI-77 for 24 h. The MTT method was used to detect the cell survival rate after different treatment; According to the results of curcumin and UMI-77, the experimental settings were divided into control group, curcumin group (20 μmol/L curcumin treated cells), UMI-77 group (15 μmol/L Mcl-1 small molecule inhibitor UMI-77 treated cells) and curcumin+ UMI-77 group (20 μmol/L curcumin and 15 μmol/L Mcl-1 small molecule inhibitor UMI-77 treated cells), MTT method was used to detect cell proliferation inhibition rate, Annexin V-FITC/PI double staining method and TUNEL staining were used to detect cell apoptosis, DCFH-DA probe was used to detect cell reactive oxygen species, JC-1 fluorescent probe was used to detect mitochondrial membrane potential, Western blot was used to detect the expression levels of apoptosis-related proteins and Notch1 signaling pathway-related proteins.@*RESULTS@#After the treatment of Molt-4 cells with different concentrations of curcumin and Mcl-1 small molecule inhibitor UMI-77, the cell survival rate was decreased (P<0.05); Compared with the control group, the cell proliferation inhibition rate of the curcumin group and the UMI-77 group were increased, the apoptosis rate of cell was increased, the level of ROS was increased, the protein expression of Bax, Caspase-3 and Caspase-9 in the cells were all increased, and the protein expression of Bcl-2 was reduced (P<0.05); Compared with the curcumin group or UMI-77 group, the cell proliferation inhibition rate and apoptosis rate of the curcumin+UMI-77 group were further increased, and the level of ROS was increased. At the same time, the protein expression of Bax, Caspase-3 and Caspase-9 in the cells were all increased, the protein expression of Bcl-2 was reduced (P<0.05); In addition, the mitochondrial membrane potential of the cells after curcumin treatment was decreased, and the proteins expression of Notch1 and HES1 were reduced (P<0.05).@*CONCLUSION@#Curcumin can enhance the apoptosis of T-ALL cells induced by Mcl-1 small molecule inhibitor UMI-77 by reducing the mitochondrial membrane potential, the mechanism may be related to the inhibition of Notch1 signaling pathway.


Subject(s)
Humans , Apoptosis , Apoptosis Regulatory Proteins , Caspase 3/metabolism , Caspase 9/pharmacology , Cell Line, Tumor , Curcumin/pharmacology , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Proto-Oncogene Proteins c-bcl-2/metabolism , Reactive Oxygen Species/pharmacology , Sulfonamides , Thioglycolates , bcl-2-Associated X Protein/pharmacology
13.
Acta Pharmaceutica Sinica ; (12): 689-695, 2021.
Article in Chinese | WPRIM | ID: wpr-876514

ABSTRACT

Colorectal cancer is a common malignant tumor in the gastrointestinal tract, with the characteristics of high morbidity and mortality. Studies have shown that the occurrence and development of colorectal cancer is closely related to the abnormal activation of Wnt signaling pathway. Abnormal expression of β-catenin in Wnt pathway is found both in the cytoplasm and nucleus of tumor cells. Different drugs can target the Wnt signaling pathway and its upstream and downstream related factors to inhibit or suppress the development of colorectal cancer. We review the components of Wnt signaling pathway, and the correlation between Wnt signaling pathway and colorectal cancer. Then, we summarize the current status of drug research targeting the Wnt signaling pathway in colorectal cancer. Finally, the challenges and prospects of these methods and drugs were briefly summarized.

14.
Acta Pharmaceutica Sinica B ; (6): 3567-3584, 2021.
Article in English | WPRIM | ID: wpr-922425

ABSTRACT

Protein neddylation is catalyzed by a three-enzyme cascade, namely an E1 NEDD8-activating enzyme (NAE), one of two E2 NEDD8 conjugation enzymes and one of several E3 NEDD8 ligases. The physiological substrates of neddylation are the family members of cullin, the scaffold component of cullin RING ligases (CRLs). Currently, a potent E1 inhibitor, MLN4924, also known as pevonedistat, is in several clinical trials for anti-cancer therapy. Here we report the discovery, through virtual screening and structural modifications, of a small molecule compound HA-1141 that directly binds to NAE in both

15.
Acta Pharmaceutica Sinica ; (12): 1832-1844, 2021.
Article in Chinese | WPRIM | ID: wpr-887000

ABSTRACT

Fibroblast growth factor receptor (FGFR), as a member of the receptor tyrosine kinase family, participates in a variety of biological processes by binding to ligand fibroblast growth factors (FGFs) and activating downstream signaling pathways, such as cell proliferation, migration, anti-apoptosis, angiogenesis, etc. FGFR gene amplification, missense mutations, oncogenic fusion are related to the occurrence and development of many cancers. FGFR has become an important potential target in cancer treatment. At present most of these studies focus on FGFR1-3, however there is growing evidence implicating an important and unique role of FGFR4 in oncogenesis and resistance to anti-tumor therapy in multiple types of cancer. The abnormality of FGF19-FGFR4 signaling pathway has been proved to be a carcinogenic factor of liver cancer. Importantly, there are several novel FGFR4-specific inhibitors in clinical trials, FGFR4 is therefore a promising target for the treatment of hepatocellular carcinoma harboring aberrant FGF19-FGFR4 signaling. In this review, we focus on assessing the role of FGFR4 in liver cancer, including a summary of the structure and ligand of FGFR4, downstream signaling pathways, abnormal activation in liver cancer, and the research progress of small molecule FGFR4 inhibitors, FGFR4 monoclonal antibodies and combined immunotherapy.

16.
Acta Pharmaceutica Sinica ; (12): 1571-1579, 2021.
Article in Chinese | WPRIM | ID: wpr-881553

ABSTRACT

Local focal adhesion kinase (FAK) is a non-receptor intracellular tyrosine kinase that plays an important role in tumor initiation, development, metastasis and invasion, and is considered to be an important target for the development of antineoplastic drugs. It has both kinase-dependent and non-kinase-dependent scaffolding functions. However, traditional small molecular inhibitors can only inhibit its kinase-dependent activity, so it is difficult to target the kinase-independent scaffolding function. Therefore, there is an urgent need for novel strategies to enhance FAK targeting to lay the foundation for determining the druggability and discovery of FAK inhibitors. Proteolysis targeting chimera (PROTAC) is a new drug development strategy that can recruit E3 ligase to specifically ubiquitinylate target proteins for degradation through the proteasome system. The unique mechanism of action of the PROTAC system could be used to target and degrade the FAK protein, thus eliminating the scaffolding function of FAK. In this review, FAK protein, the signaling pathway, and small molecule inhibitors are briefly described, and the latest research progress in targeting the degradation of FAK using PROTAC technology is summarized.

17.
Acta Pharmaceutica Sinica ; (12): 1562-1570, 2021.
Article in Chinese | WPRIM | ID: wpr-881547

ABSTRACT

The RAS (rat sarcoma) gene is one of the important oncogenes, and its mutation is present in about 30% human tumors. KRAS (kirsten rat sarcoma viral oncogene) is one of the three RAS subtypes, and KRAS mutations are more common than the mutations in other two RAS subtypes. In recent years, with the continuous research, new ideas have been provided for the treatment of cancers via targeting-KRAS. Efforts have been made to develop various KRAS inhibitors. Here, based on the mechanism of action, we classified KRAS inhibitors into two categories: inhibitors that directly target KRAS and inhibitors that indirectly act on KRAS. The representative KRAS inhibitors were summarized and introduced in this paper.

18.
Chinese Traditional and Herbal Drugs ; (24): 1397-1405, 2020.
Article in Chinese | WPRIM | ID: wpr-846508

ABSTRACT

Objective: Based on the systematic pharmacological database of traditional Chinese medicine (TCM) and the analysis platform TCMSP, the computer virtual screening technique was used to screen the small molecule inhibitors of SARS-CoV-2 3CL hydrolase from Chinese materia medica (CMM), and speculate the potential anti-COVID-19 novel coronavirus pneumonia TCMs and its compounds. Methods: SARS-CoV-2 3CL hydrolase protein was targeted in this study. Autodock Vina software and Python script were used to realize high-throughput molecular docking. Combined with “ADME-Lipinski” rules, the re-screening was carried out to optimize the active ingredients and speculate the key TCMs and compound prescriptions. Based on the perspective of network pharmacology, a component-target-pathway network was constructed to infer the mechanism of action of core drug pairs. Results: Taking the reference ligand as positive control, 66 natural micromolecule compounds with good pharmacokinetic properties were obtained. Twelve single TCMs, two Chinese medicine pairs of Glycyrrhizae Radix et Rhizoma-Mori Cortex and Lonicerae Japonicae Flos-Forsythiae Fructus, and 12 TCM prescriptions including Sangju Drink and modified Sangju Drink and Yinqiao Powder were selected as candidate schemes to fight against novel coronavirus pneumonia. Conclusion: This study is based on high-throughput molecular docking technology to virtually screen small molecule inhibitors of SARS-CoV-2 3CL hydrolase of CMM and Chinese medicines, innovatively analyze the potential molecular mechanism in combination with network pharmacology, and provide scientific guidance and theoretical basis for TCM to resist novel coronavirus pneumonia.

19.
Chinese Pharmacological Bulletin ; (12): 556-561, 2020.
Article in Chinese | WPRIM | ID: wpr-857002

ABSTRACT

Aim To investigate the inhibitory effect of small molecule inhibitors of ornithine decarboxylase inhibitor 1 (AZIN-1) on non-small cell lung cancer and its mechanism. Methods Cell proliferation was detected by Cell Counting Kit-8 (CCK-8). Apoptosis was analyzed by flow cytometry (PI/Annexin V-FITC double staining). The expression of ornithine decarboxylase (ODC), ornithine decarboxylase anti-enzyme-1 (AZ-1) and AZIN-1 was detected by Western blot. Cell cycle was analyzed by flow cytometry (PI single staining). The total polyamine content in cellswas measured by high performance liquid chromatography (HPLC). Results Small molecule inhibitor of AZIN-1 could significantly inhibit the proliferation of A549 cells, cause G0/G, cycle arrest, induce apoptosis of A549 cells, inhibit the expression of AZIN-1 and ODC, interfere with intracellular polyamine metabolism, and reduce total polyamine content in cells. Conclusions Small molecule inhibitor of AZIN-1 has significant growth inhibitory effect on A549 cells, and its mechanism may be related to the induction of apoptosis and interference with polyamine metabolism.

20.
Acta Pharmaceutica Sinica ; (12): 821-831, 2020.
Article in Chinese | WPRIM | ID: wpr-821677

ABSTRACT

ACK1 (activated Cdc42-associated kinase) is a non-receptor tyrosine kinase, originally identified by its binding to the GTP-binding small GTPase Cdc42. It is widely expressed in human tissues and activated by various extracellular growth factors such as EGF, PDGF and TGF-β. The activated ACK1 mediates the signaling cascade by interacting with downstream effectors followed by their phosphorylation. In recent years, researchers have investigated the biological functions of ACK1 and its roles in cancer research. The gene amplification and overexpression of ACK1 is associated with a poor prognosis and metastasis in a variety of cancers including lung, ovarian and prostate cancers. Therefore, the development of small molecule inhibitors of ACK1 provides promising opportunities for cancer-targeted therapy. In this review, we briefly describe recent advances in understanding the activation and biological function of ACK1 and introduce its novel inhibitors with potential therapeutic activities in preclinical studies.

SELECTION OF CITATIONS
SEARCH DETAIL