Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 206-211, 2010.
Article in Chinese | WPRIM | ID: wpr-341094

ABSTRACT

Recent evidence has suggested that Akt2 plays an important role in the protection of cells from paclitaxel(PTX)-induced apoptosis and control of the cell cycle.In addition,some scholars suggested that the PTX sensitivity depends on a functional spindle assembly checkpoint.In the present study,we investigated the role of the Akt2/Bub1 cross-talking in apoptosis and cell cycle after exposure of the A2780 ovarian cancer cells to paclitaxel(PTX).Recombinant expression plasmid WT-Akt2 was transfected into A2780 cells by lipofectamine2000,and then the expression level of Akt2 gene was detected by using RT-PCR and Western blotting.Cell apoptosis and cell cycle were detected by flow cytometry and Hoechst 33342 staining after treatment with PTX.Moreover,we compared the expression level of Bubl in different groups by Western blotting.Our study showed that up-regulation of Akt2 contributed to A2780 ovarian cancer cells overriding PTX-induced G2/M arrest,and inhibited Bub1 expression.Our findings might shed light on the molecular mechanism of PTX-induced resistance in ovarian cancer and help develop novel anti-neoplastic strategies.

2.
Experimental & Molecular Medicine ; : 195-204, 2007.
Article in English | WPRIM | ID: wpr-90613

ABSTRACT

The BubR1 mitotic-checkpoint protein monitors proper attachment of microtubules to kinetochores, and links regulation of chromosome-spindle attachment to mitotic-checkpoint signaling. Thus, disruption of BubR1 activity results in a loss of checkpoint control, chromosomal instability caused by a premature anaphase, and/or the early onset of tumorigenesis. The mechanisms by which deregulation and/or abnormalities of BubR1 expression operate, however, remain to be elucidated. In this study, we demonstrate that levels of BubR1 expression are significantly increased by demethylation. Bisulfite sequencing analysis revealed that the methylation status of two CpG sites in the essential BubR1 promoter appear to be associated with BubR1 expression levels. Associations of MBD2 and HDAC1 with the BubR1 promoter were significantly relieved by addition of 5-aza-2'-deoxycytidine, an irreversible DNA methyltransferase inhibitor. However, genomic DNA isolated from 31 patients with colorectal carcinomas exhibited a +84A/G polymorphic change in approximately 60% of patients, but this polymorphism had no effect on promoter activity. Our findings indicate that differential regulation of BubR1 expression is associated with changes in BubR1 promoter hypermethylation patterns, but not with promoter polymorphisms, thus providing a novel insight into the molecular regulation of BubR1 expression in human cancer cells.


Subject(s)
Humans , Azacitidine/pharmacology , Base Sequence , Cell Line, Tumor , DNA Methylation/drug effects , DNA Mutational Analysis , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic/drug effects , HeLa Cells , Histone Deacetylases/metabolism , Jurkat Cells , Molecular Sequence Data , Neoplasms/genetics , Polymorphism, Genetic/drug effects , Promoter Regions, Genetic/drug effects , Protein Binding/drug effects , Protein Kinases/genetics , Protein Serine-Threonine Kinases , Transcription, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL