Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Article in Chinese | WPRIM | ID: wpr-1021340

ABSTRACT

BACKGROUND:Sema3A is a power secretory osteoprotective factor.However,studies about Sema3A-modified dental pulp stem cells(Sema3A-DPSCs)are rare. OBJECTIVE:To explore the osteogenic differentiation ability of Sema3A-DPSCs and their regulatory effect on the osteogenic differentiation of the pre-osteoblast cell line MC3T3-E1. METHODS:First,Sema3A-DPSCs were constructed using a lentivirus infection system carrying the Sema3A gene.Control lentivirus-treated DPSCs(Vector-DPSCs)were used as controls.Sema3A-DPSCs or Vector-DPSCs were co-cultured with proosteoblast line MC3T3-E1 at the ratio of 1∶1 and 1∶3 for 24 hours.Finally,the Sema3A-DPSCs,Vector-DPSCs and their co-cultured cells with MC3T3-E1 were cultured for osteogenic induction and differentiation.Osteogenic gene expression was detected by alkaline phosphatase staining,alizarin red staining and real-time quantitative RT-PCR to evaluate osteogenic differentiation ability. RESULTS AND CONCLUSION:(1)Sema3A mRNA and protein expression levels in Sema3A-DPSCs were significantly up-regulated.The level of secreted Sema3A in cell supernatant was up-regulated.(2)Compared with the Vector-DPSCs,mRNA expressions of osteogenic genes alkaline phosphatase,Runt-related transcription factor 2,osteocalcin and Sp7 transcription factors in Sema3A-DPSCs were up-regulated;the activity of alkaline phosphatase was enhanced,and the formation of mineralized nodules increased.(3)There were no obvious differences in proliferation between Sema3A-DPSCs and Vector-DPSCs.(4)Compared with MC3T3-E1/Vector-DPSCs co-culture system,the expression of MC3T3-E1 osteogenic genes was up-regulated,and the total alkaline phosphatase activity was enhanced and more mineralized nodules were formed in the MC3T3-E1/Sema3A-DPSCs co-culture system.(5)The results suggest that overexpression of Sema3A can enhance the osteogenic differentiation of DPSCs.Overexpression of Sema3A in DPSCs can promote osteogenic differentiation of MC3T3-E1 in the DPSCs/MC3T3-E1 co-culture system.

2.
Article in English | WPRIM | ID: wpr-761899

ABSTRACT

BACKGROUND: Liver disease is one of the top causes of death globally. Although liver transplantation is a very effective treatment strategy, the shortage of available donor organs, waiting list mortality, and high costs of surgery remain huge problems. Stem cells are undifferentiated cells that can differentiate into a variety of cell types. Scientists are exploring the possibilities of generating hepatocytes from stem cells as an alternative for the treatment of liver diseases. METHODS: In this review, we summarized the updated researches in the field of stem cell-based therapies for liver diseases as well as the current challenges and future expectations for a successful cell-based liver therapy. RESULTS: Several cell types have been investigated for liver regeneration, such as embryonic stem cells, induced pluripotent stem cells, liver stem cells, mesenchymal stem cells, and hematopoietic stem cells. In vitro and in vivo studies have demonstrated that stem cells are promising cell sources for the liver regeneration. CONCLUSION: Stem cell-based therapy could be a promising therapeutic method for patients with end-stage liver disease, which may alleviate the need for liver transplantation in the future.


Subject(s)
Humans , Cause of Death , Embryonic Stem Cells , Hematopoietic Stem Cells , Hepatocytes , In Vitro Techniques , Induced Pluripotent Stem Cells , Liver Diseases , Liver Regeneration , Liver Transplantation , Liver , Mesenchymal Stem Cells , Methods , Mortality , Stem Cells , Tissue Donors , Waiting Lists
3.
International Eye Science ; (12): 2260-2262, 2017.
Article in Chinese | WPRIM | ID: wpr-669379

ABSTRACT

·Age - related macular degeneration ( ARMD ) and Stargardt's macular dystrophy ( SMD ) are two kinds of degenerative retinal diseases that respectively lead to irreversible vision loss of the elderly and juvenile population. However, the severe visual impairment in dry ARMD and SMD remains untreatable. In recent years, with the advancement of stem cell technology, stem cell-derived RPE cell transplantation therapy of retinal degeneration has become new research hotspot and direction. This article reviewed the progress of stem cell based approaches for treating retinal degenerative diseases and discussed the prospect and challenges in this field.

SELECTION OF CITATIONS
SEARCH DETAIL