Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Acta Pharmaceutica Sinica ; (12): 2104-2112, 2018.
Article in Chinese | WPRIM | ID: wpr-780094

ABSTRACT

In this study a reduction-responsive nanoparticles (NPs) modified with hyaluronic acid (HA) was prepared for the co-delivery of doxorubicin (DOX) and siRNA and then evaluated as a lung cancer targeting delivery system in vitro. The amphiphilic polymer of poly-L-lysine-lipoic acid (PLA) based on poly-L-lysine (PLL) with lipoic acid (LA) was synthesized via amidation reaction and characterized by 1H NMR. The DOX loaded PLA NPs were prepared via dialysis method, and siRNA was loaded via electrostatic attraction to prepare the co-delivery NPs system (PLA/DOX-siRNA-NPs). Then PLA/DOX-siRNA-NPs were coated with HA to obtain HA-PLA/DOX-siRNA-NPs. The tumor microenvironment-responsive properties under different pH or reduction condition of HA-PLA/DOX-siRNA-NPs were evaluated by investigating the particle size and zeta potential. Cellular uptake of HA-PLA/DOX-siRNAFAM-NPs by A549 cells and endosomal escape of siRNA were studied using confocal laser scanning microscope (CLSM). 1H NMR spectrum demonstrated that PLA was successfully synthesized with LA grafting rate of 25.1%. The encapsulation efficiency (EE) and drug loading (DL) of HA-PLA/DOX-NPs was (86.93±8.91)% and (4.17±0.68)%, respectively, and siRNA was loaded at an N/P of 6:1 in carrier. HA-PLA/DOX-siRNA-NPs exhibited a suitable size of (167.3±9.9) nm and negative charge of (-15.5±1.4) mV with the optimal ratio of PLA and HA of 1:3. Additionally, the zeta potential of HA-PLA/DOX-siRNA-NPs significantly increased with charge reversal from negative to positive after the treatment with HAase, and the particle size of HA-PLA/DOX-siRNA-NPs changed significantly under the condition of 10 mmol·L-1 glutathione (GSH). The release profiles in vitro demonstrated that HA-PLA/DOX-NPs exhibited a maintained release behavior at pH 7.4 and the adding of GSH (10 mmol·L-1) led to rapid release of DOX from NPs. In vitro cellular uptake and subcellular distribution study demonstrated that themodification of HA enhanced the affinity of NPs to A549 cells and targeting ability, and the cellular uptake of HA-PLA/DOX-siRNAFAM-NPs significantly increased after the treatment with HAase. It was observed that HA-PLA/DOX-siRNAFAM-NPs could escape from endo-lysosomes followed by sharp payloads release to their relative targets. All these results demonstrated that the co-loaded NPs have a high entrapment efficiency of DOX and siRNA. And they also exhibited an active tumor targeting efficiency and tumor microenvironment-responsive properties, which were beneficial to cellular uptake and intracellular release of DOX and siRNA. In conclusion, these reduction-responsive NPs modified with HA have great potential as co-delivery systems for antitumor agents and siRNA.

2.
Herald of Medicine ; (12): 445-447, 2015.
Article in Chinese | WPRIM | ID: wpr-464648

ABSTRACT

Objective To observe the targeting effect of curcumin gelatin microsphere in rats in vivo. Methods Injections of curcumin gelatin microsphere and curcumin were injected via tail vein, respectively. HPLC was used to determine the content of curcumin in different organs. The pharmacokinetic parameters were calculated on the basis of compartment models by using DAS 2. 0 program. Targeting efficiency was used to evaluate tissue distribution of curcumin. Results Targeting efficiency of curcumin gelatin microsphere in heart, liver, spleen, lung and kidney was 0. 875, 0. 121, 1. 182, 5. 834 and 0. 896, respectively. Conclusion Curcumine gelatin microspheres can improve lung-targeting efficiency, and benefit for study on lung targeting therapeutic effect.

SELECTION OF CITATIONS
SEARCH DETAIL