Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Main subject
Year range
1.
Braz. J. Pharm. Sci. (Online) ; 53(2): e16039, 2017. tab, graf
Article in English | LILACS | ID: biblio-839492

ABSTRACT

ABSTRACT Sustained release systems for therapeutic proteins have been widely studied targeting to improve the action of these drugs. Molecular entrapping of proteins is particularly challenging due to their conformational instability. We have developed a micro-structured poly-epsilon-caprolactone (PCL) particle system loaded with human insulin using a simple double-emulsion w/o/w method followed by solvent evaporation method. This formulation is comprised by spheric-shaped microparticles with average size of 10 micrometers. In vitro release showed a biphasic behavior such as a rapid release with about 50% of drug delivered within 2 hours and a sustained phase for up to 48 h. The subcutaneous administration of microencapsulated insulin showed a biphasic effect on glycemia in streptozotocin-induced diabetic mice, compatible with short and intermediate-acting behaviors, with first transition peak at about 2 h and the second phase exerting effect for up to 48h after s.c. administration. This study reveals that a simplified double-emulsion system results in biocompatible human-insulin-loaded PCL microparticles that might be used for further development of optimized sustained release formulations of insulin to be used in the restoration of hormonal levels.


Subject(s)
Animals , Male , Female , Mice , Insulin/analysis , Pharmaceutical Preparations/administration & dosage , Microscopy, Electron/statistics & numerical data , Diabetes Mellitus/prevention & control , Particulate Matter/pharmacology , Drug Liberation/physiology , Hypoglycemic Agents/pharmacology
2.
Journal of China Pharmaceutical University ; (6): 648-653, 2016.
Article in Chinese | WPRIM | ID: wpr-811876

ABSTRACT

@#Peptide and protein biologics possess high specificity and high biological activity, but their poor stability and short plasma half-life have limited clinical application. One established strategy to increase half-life of therapeutic proteins is chemical conjugation of the biologic with PEG. Nevertheless, PEGylation technology has some drawbacks, so recombinant polypeptide mimetics of PEG have gradually developed in recent years. Pharmaceutically active protein can be fused with specific amino acid sequences using recombinant DNA technology, and then increase hydrodynamic volume or produce charge effect, which retards kidney filtration and eventually prolongs the half-life. This article mainly reviews kinds of polypeptides and the research progress in half-life extension of therapeutic proteins.

SELECTION OF CITATIONS
SEARCH DETAIL