Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Chinese Journal of Tissue Engineering Research ; (53): 3974-3980, 2020.
Article in Chinese | WPRIM | ID: wpr-847318

ABSTRACT

BACKGROUND: Bone tissue engineering has provided a novel ideal for treating bone defects in clinic. This study is the first to combine traditional Chinese medicine with the nanostructures of tissue-engineered scaffolds in order to explore and construct a new bone tissue substitute material for the treatment of bone defects. OBJECTIVE: To investigate the osteogenic activity of icariin (ICA)/hydroxyapatite (HA)/poly(lactic-co-glycolic acid) (PLGA) composite scaffolds. METHODS: A HA/PLGA composite scaffold was prepared by physical blending of HA and PLGA, and was then soaked in ICA solution of different concentrations to obtain the HA/ICA/PLGA scaffold. Rabbit bone marrow mesenchymal stem cells were used to evaluate the cell adhesion, proliferation, osteogenesis and cytotoxicity of the composite scaffold. The cell adhesion, proliferation and cytotoxicity were detected by MTT method. The activities of alkaline phosphatase and osteocalcin were detected by ELISA. The expression levels of osteogenic genes and proteins were detected by fluorescence quantitative PCR and western blot assay, respectively. RESULTS AND CONCLUSION: Adding appropriate amount of HA into PLGA could improve the mechanical strength of the scaffold, and 10% HA had the best effect with tensile strength of (1.67±0.37) MPa, and compression modulus of (4.17±1.62) MPa, and nanostructure would be formed on the surface of the scaffold. The nanostructure could promote the adhesion of bone marrow mesenchymal stem cells on the surface of the scaffold. ICA did not affect the proliferation of bone marrow mesenchymal stem cells on the composite scaffold. However, the HA/PLGA composite scaffold soaked in 1.00 µmol/L ICA aqueous solution had the optimal osteogenic differentiation function, and the expression levels of alkaline phosphatase, osteocalcin, osteogenic related genes and proteins (Runx-2 and COL I) were increased. The ICA/HA/PLGA scaffold had no cytotoxicity. These results suggest that HA (10%)/ICA (1.00 µmol/L)/PLGA scaffold has good mechanical properties, osteogenesis and biocompatibility, which has the potential to be a favorable scaffold for bone tissue engineering.

2.
Journal of Biomedical Engineering ; (6): 488-492, 2018.
Article in Chinese | WPRIM | ID: wpr-687604

ABSTRACT

Meniscus injury has been one of the most common knee injuries in current society. The research on artificial meniscus implants as substitutes in meniscus reconstruction therapy has become global focus in order to solve clinical problems such as irreparable meniscus injury and symptoms after full or partial meniscectomy. At present, researches on artificial meniscus implants mainly focus on biodegradable meniscus scaffolds and non-biodegradable meniscus substitutes. Although the commercialized meniscal implants, such as CMI , Actifit and NUsurface , have been applied in the clinical, none of them can perfectively restore or permanently replace the natural meniscus tissue, effectively solve the symptoms after meniscectomy, and prevent cartilage degenerative diseases. The research progress, application, advantages and disadvantages of different kinds of artificial meniscus implants are reviewed in this manuscript, and the prospect is provided.

3.
Chinese Journal of Tissue Engineering Research ; (53): 6193-6199, 2013.
Article in Chinese | WPRIM | ID: wpr-437476

ABSTRACT

BACKGROUND:Polyvinyl alcohol is a biocompatible and biodegradable polymer. It is widely used in clinical areas because of its water-soluble, film forming, emulsification, adhesiveness, tasteless, and nontoxic. OBJECTIVE:To review the applications of polyvinyl alcohol and its composite materials in bone, cartilage, skin, vessels and other tissue engineering scaffolds. METHODS:A computer-based online search of CNKI database from January 2000 to December 2011, PubMed database and Elsevier (ScienceDirect) database from January 1980 to December 2012, was performed by the first author with key words of“poly(vinyl alcohol), composite material, tissue engineering scaffold”both in Chinese and English. Literatures concerning polyvinyl alcohol and its composite materials in bone, cartilage, skin, vessels and other tissue engineering scaffolds were included, and repetitive research was excluded. RESULTS AND CONCLUSION:Although there are not enough strength, complications and other shortcomings in vivo, due to its good biocompatibility and biodegradable properties, polyvinyl alcohol and its composite materials have made great progress in tissue engineering applications from the laboratory to the pre-clinical research. But its long-term effects need further research. It wil be a main research aim of scaffold materials in the future to improve the interaction of cel s with the scaffold materials by surface modification, to prepare biomimetic materials by cel microenvironment simulation, to improve the hydrophilicity, the adhesion of cel s, and cel differentiation and proliferation, to bionic the structure and function of the natural extracel ular matrix by building three-dimensional porous structure and control ing the release of cel growth factors, to meet the need of tissue regeneration by congruity or harmony of degradation and mechanical strength.

4.
Chinese Medical Equipment Journal ; (6)2003.
Article in Chinese | WPRIM | ID: wpr-590379

ABSTRACT

It is now generally recognized that repairing of defect bones is one of the major issues in bone tissue engineering research.However,nowadays massive bone defect because of injury,infection or tumor removal has not been effectively solved in clinic.One of the key issues in bone tissue engineering is finding suitable biodegradable materials substitutes and scaffolds for seeding cells and guiding the subsequent growth of bone.The design and fabrication of bone tissue engineering scaffolds are overviewed as well as the development of the scaffold materials.

SELECTION OF CITATIONS
SEARCH DETAIL