Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 223
Filter
1.
Braz. j. med. biol. res ; 57: e13809, fev.2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1568979

ABSTRACT

Small nucleolar RNAs (snoRNAs) have robust potential functions and therapeutic value in breast cancer. Herein, we investigated the role SNORA5A in breast cancer. Samples from The Cancer Genome Atlas (TCGA) were reviewed. The transcription matrix and clinical information were analyzed using R software and validated in clinical tissue samples. SNORA5A was significantly down-regulated in breast cancer, and high expression of SNORA5A correlated with a favorable prognosis. High expression of SNORA5A induced a high concentration of tumor-associated macrophages M1 and a low concentration of tumor-associated macrophages M2. Moreover, SNORA5A were clustered in terms related to cancer and immune functions. Possible downstream molecules of SNORA5A were identified, among which TRAF3IP3 was positively correlated with M1 and negatively correlated with M2. The function of TRAF3IP3 in tumor inhibition and its relationship with macrophages in clinical tissue samples were in accordance with bioinformatics analysis results. SNORA5A could regulate macrophage phenotypes through TRAF3IP3 and serves as a potential prognostic marker for breast cancer patients.

2.
Article in Chinese | WPRIM | ID: wpr-1017233

ABSTRACT

Objective To investigate the effect of cinobufacini on inhibiting colorectal cancer metastasis by regula-ting the polarization of M2 macrophages.Methods THP-1 was induced into M0 type macrophages.The condi-tioned medium of HCT116 cells was collected to stimulate M0 type macrophages.The polarization of M2 type mac-rophages was observed by flow cytometry,real-time quantitative PCR and ELISA experiments.The conditioned me-dium of M0 type macrophages and HCT116-Mφ cells was collected to stimulate HCT116 cells.The ability of migra-tion and invasion was observed by wound healing assay and Transwell assay.The effect of cinobufacini on the via-bility of HCT116 cells was detected by CCK-8 assay.The conditioned medium of HCT116 and HCT116+cinobufa-cini was collected to stimulate M0 type macrophages.The polarization of M2 type macrophages was observed by flow cytometry,real-time quantitative PCR and ELISA experiments.The conditioned media of HCT116-Mφ cells and(HCT116+cinobufacini)-Mφ cells were collected to stimulate HCT116 cells.The changes of migration and inva-sion ability were observed by wound healing assay and Transwell assay.Results After stimulation of M0 type mac-rophages in HCT116 cell conditioned medium,the morphology of M0 macrophages turned into fusiform cells,the proportion of CD11b+CD206+cells increased,and the expression of M2 macrophage markers IL-10 and TGF-β in-creased.The migration and invasion ability of HCT116 cells were significantly enhanced after stimulation in the conditioned medium of HCT1 16-Mφ cells.After the addition of cinobufacini,not only the polarization proportion of M2 macrophages decreased,but also the metastatic effect mediated by M2 macrophages was inhibited.Conclusion HCT116 cells can induce the polarization of M2 macrophages,while cinobufacini can inhibit the tumor metastasis mediated by M2 macrophages by inhibiting the polarization of M2 macrophages.

3.
Article in Chinese | WPRIM | ID: wpr-1020567

ABSTRACT

Objective:To investigate the impact of BMI1 expression in OSCC on the recruitment and differentiation of tumor-associat-ed macrophages(TAMs).Methods:BMI1 expression in 519 cases of OSCC tissues and 44 normal controls was analyzed using online datasets of GEPIA 2.0,and validated in 3 cases of OSCC samples and controls by qRT-PCR and western blotting.The function of BMI1/NF-κB axis during OSCC carcinogenesis was investigated by CCK8 assays,wound healing test and transwell assays.Macrophage phenotypes and recruitment were determined using qRT-PCR and western blotting following coculture of the cells with human monocyte cells(THP-1)by OSCC conditioned medium.Moreover,a cell line-derived xenograft(CDX)model was used to detect the effect of BMI1 on tumor growth in vivo.Results:Compared with the normal tissues and cells,the expression level of BMI1 in OSCC tissues and cells was significantly upregulated.BMI1 knockdown impaired the proliferation,migration,and invasion abilities of OSCC cell lines in NF-κB-dependent manner.Furthermore,OSCC cells with high BMI1 expression inhibited the migration of THP-1 cells,promoted M2-like macrophage polarization through NF-κB pathway in vitro.Xenograft experiments further confirmed the inhibitory effect of BMI1 knockdown on the tumorigenesis ability of OSCC cells in vivo.Conclusion:BMI1 promotes M2-like polarization by regulating NF-κB and may be used as a potential therapeutic target for antitumor immunity.

4.
Article in Chinese | WPRIM | ID: wpr-1029539

ABSTRACT

Tumor-associated macrophages (TAMs) are the predominant immune cells in the tumor microenvironment (TME). They have been shown to play an important immunosuppressive role in the development of TME and promote tumor immune escape, growth and metastasis. It is a current research hotspot to regulate the functional polarization of TAMs through trained immunity (metabolic reprogramming, epigenetic remodeling) to affect the occurrence and development of tumors. Therefore, in-depth research in this field not only presents a more comprehensive perspective on the pathogenesis of immune-mediated diseases, but also can provide new strategies for clinical anti-tumor immunotherapy. This paper outlines the origin of TAMs and the phenotypes and mechanisms of TAMs polarization, discusses the mechanisms by which metabolic reprogramming and epigenetic remodeling regulate TAMs, summarizes the regulation of TAMs activation and polarization by them, and provides an overview of the progress in TAMs at the current stage of clinical practice, hoping to provide reference for the development of new immunoprevention and treatment strategies.

5.
Journal of Modern Urology ; (12): 368-374, 2024.
Article in Chinese | WPRIM | ID: wpr-1031642

ABSTRACT

【Objective】 To investigate the mechanism by which the up-regulation of miR-221-3p by tumor-associated macrophages (TAMs) may be involved in promoting the malignant metastasis of prostate cancer (PCa). 【Methods】 The microRNAs (miRNAs) expression profiles of 6 cases of metastatic PCa tissues were sequenced and analyzed.The primary TAMs were isolated.The expression of miR-221-3p was determined with qPCR.The miR-221-3p mimic or miR-221-3p inhibitor was transfected into RAW264.7 macrophages in vitro, and co-cultured with human prostate cancer PC3 cells.The proliferation, apoptosis, invasion and migration of PC3 cells were detected with CCK-8, flow cytometry (FCM), Transwell assay, respectively.Expressions of epithelial-mesenchymal transformation (EMT) related protein factors were determined with Western blot. 【Results】 In the 6 cases of metastatic PCa, hsa-miR-221-3p was significantly up-regulated in TAMs-derived from PCa tissues with positive lymph node metastasis (P<0.05).In the co-cultured system, compared with Mimic-NC group, miR-221-3p mimic group had significantly up-regulated proliferation, migration, invasion and EMT-related protein factors (except E-Cadherin) (P<0.05).Compared with Inhibitor-NC group, miR-221-3p inhibitor group had significantly up-regulated apoptosis rate, but down-regulated proliferation, migration, invasion and EMT-related protein factors (except E-Cadherin) (P<0.05). 【Conclusion】 The miR-221-3p expression up-regulate by TAMs may participate in the malignant metastasis of prostate cancer.

6.
Article in Chinese | WPRIM | ID: wpr-999166

ABSTRACT

ObjectiveTo observe the effect of Tongxie Yaofang on the function of tumor-related natural killer (NK) cells under chronic stress and explore the possible molecular mechanism. MethodFifty SPF-grade BABL/C male mice were randomized into normal, model, and low-, medium-, and high-dose (6.825, 13.65, and 27.3 g·kg-1, respectively) Tongxie Yaofang groups, with 10 mice in each group. Other groups except the blank group were subjected to 7 days of chronic restraint stress, and then forced swimming and tail suspension tests were carried out to evaluate the modeling performance. After the successful modeling, rats in Tongxie Yaofang groups were administrated with low-, medium-, and high-doses of Tongxie Yaofang by gavage, while those in the other groups were administrated with normal saline by gavage. After 14 days, each group of mice was inoculated with subcutaneous colon cancer to establish the model of colon cancer under chronic stress. The pathological changes of the tumor tissue in each group of mice were observed using hematoxylin-eosin (HE) staining. The content of CD49b-positive cells in the peripheral blood and tumor tissue of mice was measured by flow cytometry. Enzyme-linked immunosorbent assay (ELISA) was employed to measure the content of molecules associated with NK cell activation in the peripheral blood. Western blot was employed to determine the protein levels of major histocompatibility complex class Ⅰ polypeptide-related sequences A and B (MICA+MICB) and UL-16-binding protein 1 (ULBP1) in the tumor tissue. ResultCompared with the normal group, the model group showed a decrease in 5-hydroxytryptamine (5-HT) content and an increase in corticosterone (CORT) content in the serum (P<0.05). Compared with the model group, Tongxie Yaofang increased the 5-HT content and decreased the CORT content (P<0.05, P<0.01). Compared with the normal group, the modeling increased the tumor volume and weight (P<0.05), while Tongxie Yaofang inhibited such increases with no statistical significance. The tumor cells in the model group presented neat arrangement, irregular shape, uneven size, obvious atypia, common nuclear division, and small necrotic area, and blood vessels were abundant surrounding the tumor cells. Compared with the model group, Tongxie Yaofang groups showed sparse arrangement of tumor cells, different degrees of patchy necrosis areas in the tumor, and karyorrhexis, dissolution, and nuclear debris in the necrotic part. Compared with the normal group, the model group showed reduced CD49b-positive cells in the peripheral blood and tumor tissue (P<0.01). Compared with the model group, Tongxie Yaofang increased CD49b-positive cells (medium dose P<0.01, high dose P<0.05, P<0.01). Compared with the normal group, the modeling lowered the serum levels of granzymes-B (Gzms-B), perforin (PF), interferon (IFN)-γ, and tumor necrosis factor (TNF)-α (P<0.05, P<0.01). Compared with the model group, low-dose Tongxie Yaofang elevated the serum levels of PF, Gzms-B, and TNF-α (P<0.05, P<0.01), and medium-dose Tongxie Yaofang elevated the serum levels of Gzms-B, PF, IFN-γ, and TNF-α (P<0.05, P<0.01). In addition, high-dose Tongxie Yaofang elevated the serum levels of PF, IFN-γ, and TNF-α (P<0.01). Compared with the normal group, the model group presented down-regulated protein level of ULBP1 (P<0.05). Compared with the model group, low-, medium-, and high-dose Tongxie Yaofang up-regulated the protein level of ULBP1 (P<0.05, P<0.01), and medium- and high-dose Tongxie Yaofang up-regulated the protein level of MICA+MICB (P<0.05, P<0.01). ConclusionTongxie Yaofang may promote NK cell activation by up-regulating the expression of MICA+MICB and ULBP1, thereby delaying the progression of colon cancer under chronic stress.

7.
Article in Chinese | WPRIM | ID: wpr-1024369

ABSTRACT

Objective To investigate the effect of tumor-associated macrophage exosomes on glycolysis of pancreatic cancer cells and its mechanism.Methods The THP-1 cells were induced to differentiate into the M0 and M2 macrophages,and the exosomes(M0 exo and M2 exo)were extracted.The pancreatic cancer cells CAPAN-2 and ASPC-1 were divided into the PBS group,the M0 exo group,the M2 exo group and the M2 exo+siKRAS group,and co-incubated with equal volumes of PBS,10 μg/mL of M0 exo,10 μg/mL of M2 exo,and transfection of KRAS siRNA and 10 μg/mL of M2 exo,respectively.Transmission electron microscopy was used to observe the structure of exosomes;CCK-8 was used to detect the cell proliferation capacity;the kit was used to detect the glucose uptake rate and production level of lactic acid,and Western blot was used to detect the exosome markers expression,KRAS protein expression and ERK1/2 phosphorylation level.Results THP-1 was induced to differentiate into M2 macrophages expressing Arg-1 and IL-10 marker proteins.M0 exo and M2 exo had a bilayer membrane structure with a particle size of about 100 nm and expressed exosomal marker proteins of CD9,CD81,and TSG101.Compared with the PBS group,the cell proliferation,glucose uptake rate,production level of lactic acid of CAPAN-2 and ASPC-1 cells in the M2 exo group increased significantly(P<0.05),and the KRAS expression and ERK1/2 phosphorylation level were significantly increased(P<0.001).Compared with the M2 exo group,the proliferation,glucose uptake rate and production level of lactic acid of CAPAN-2 and ASPC-1 cells in the M2 exo+siKRAS group decreased significantly(P<0.05).Conclusion Tumor-associated macrophage exosomes can promote the glycolysis of pancreatic cancer cells via the activation of KRAS signaling pathway.

8.
Article in Chinese | WPRIM | ID: wpr-1025107

ABSTRACT

Tumor-associated macrophages(TAMs)are the predominant cell group in the tumor microenvironment(TME)and are the most important regulatory cells of immune system suppression and tumor cell proliferation in TIME.Src homology-2 domain-containing protein tyrosine phosphatase 2(SHP-2)is a non-receptor protein tyrosine phosphatase that plays an important role in the transmission of signals from the cell surface to the nucleus.SHP-2 is a key intracellular regulatory factor mediating cell proliferation and differentiation and is involved in a variety of growth factor and cytokine signaling pathways linking the cell surface to the nucleus.Recent studies have shown that SHP-2 is a key enzyme in determining the function of TAMs,but because of its variable function,it plays different or even opposite roles in different solid TMEs.This paper reviews the function of SHP-2 in TAMs and related solid tumors to provide a comprehensive reference for tumor immunity and targeted therapy research.

9.
Article in Chinese | WPRIM | ID: wpr-1026837

ABSTRACT

The pathogenesis theory of"spleen deficiency and stasis toxin"in gastric cancer holds that spleen is the source of generation and transformation of qi and blood,that spleen deficiency is the internal basis of disease and throughout the disease.Stasis toxin is based on spleen deficiency,which is the fundamental pathogenesis of gastric cancer.In the pathological process of gastric cancer,a variety of metabolic substances in tumor cells and tumor microenvironment,mainly glucose metabolic reprogramming,undergo metabolic changes to reconstruct the phenotype and function of tumor-related macrophages,which is consistent with the pathogenesis theory of"spleen deficiency and stasis toxin".Therefore,this article focused on the reprogramming of glucose metabolism in tumor microenvironment to drive the phenotypic remodeling of tumor-related macrophages,explored the scientific connotation of the pathogenesis theory of"spleen deficiency and stasis toxin"of gastric cancer,and provided references for the theoretical and clinical research on the treatment of gastric cancer by TCM.

10.
Article in Chinese | WPRIM | ID: wpr-979454

ABSTRACT

ObjectiveThis study aims to investigate the effect of modified Baitouwengtang (MBTWD) on tumor growth and the number of tumor-associated macrophages (TAMs) in tumor tissue of MC38 cell tumor-bearing mice with colorectal cancer and explores whether MBTWD mediates the remodeling of TAM phenotype to play an immunologically antitumor effect. MethodFirstly, The C57BL/6 mouse tumor model grafted subcutaneously was established, and then model mice were classified into a model group, positive control group(3 mg·kg-1), and MBTWD groups with high and low dosages(23.43、46.86 g·kg-1), with 10 mice in each group. In addition, 10 healthy mice were set as the blank group, and the changes in body weight, tumor volume, and survival status of mice in each group were observed. Tumor tissue, spleen, and peripheral blood were collected to calculate the tumor volume change, tumor inhibition rate, and spleen mass. Hematoxylin-eosin (HE) staining was used to observe the morphological changes of tumor tissue, and an immunofluorescence assay was used to detect the expression levels of CD4, CD8, and CD206 in tumor tissues of tumor-bearing mice. The secretion levels of transforming growth factor (TGF)-β, interleukin (IL)-6, and chemokine (C-C Motif) ligand 2 (CCL2) in peripheral serum were measured by using enzyme-linked immunosorbent assay (ELISA). Secondly, a co-culture model induced by IL-4 in vitro of MC38 cells and murine monocytic macrophage RAW264.7 cells was established. Cell proliferation and activity assay (CCK-8) was used to detect the inhibitory effect of MBTWD containing serum on cell proliferation. A transwell experiment was used to detect the effect of IL-4-induced M2 macrophages on the invasion of MC38 cells. Flow cytometry was used to detect the expression of CD86 on the membrane of M2 macrophages induced by IL-4 with MBTWD containing serum. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the effect of MBTWD containing serum on the mRNA expression levels of M1 macrophage-related polarization factors CD86, nitric oxide synthase (iNOS), and IL-12, as well as M2 macrophage-related polarization factors CD206, CD163, and IL-10 after co-cultivation. Finally, the protein expression levels of colony-stimulating factor 1 receptor (CSF1R), stimulator of interferon genes (STING), and TANK binding kinase 1 (TBK1) in tumor tissues of tumor-bearing mice were detected by Western blot. ResultIn vivo experimental results show that compared with the model group, the MBTWD can significantly inhibit the tumor growth of tumor-bearing mice. Immunofluorescence experiments show that the MBTWD can increase the number of CD8+ T cell infiltration in tumor tissue of tumor-bearing mice, reduce the number of CD206+ TAMs infiltration, and down-regulate the secretion levels of cytokines IL-6, TGF-β, and CCL2 in peripheral blood of tumor-bearing mice. The results of in vitro experiments show that the MBTWD containing serum has no obvious inhibitory effect on cell proliferation, but the cell supernatant after co-cultivation with RAW264.7 cells can inhibit the proliferation activity of MC38 cells, and the invasion ability of MC38 cells is enhanced by IL-4-induced M2 macrophages. However, this effect can be inhibited in a concentration-dependent manner by the MBTWD containing serum. At the same time, the results of Real-time PCR show that the MBTWD containing serum can up-regulate the mRNA expression levels of M1 macrophage-related polarization factors CD86, iNOS, and IL-12 and down-regulate those of M2 macrophage-related polarization factors CD206, CD163, and IL-10. Flow cytometry results also confirm that the MBTWD containing serum can increase the number of repolarized CD86+ M1 macrophages, indicating that MBTWD can induce M2 macrophages to repolarized M1 macrophages to play an anti-tumor growth role. Finally, Western blot results show that MBTWD can down-regulate the expression of CSF1R protein and up-regulate that of STING and TBK1 proteins in tumor tissue of tumor-bearing mice. ConclusionMBTWD can down-regulate the infiltration number of CD206+ TAMs and increase the infiltration of CD8+ T cells, thereby playing an immunologically antitumor effect on the growth inhibition of colorectal cancer, which may be related to regulating CSF1R signaling and then activating STING/TBK1 signaling pathway to induce phenotypic remodeling of TAMs.

11.
Article in Chinese | WPRIM | ID: wpr-981293

ABSTRACT

Pancreatic cancer is one of the digestive system tumors with a high degree of malignancy,and most of the patients are diagnosed in advanced stages.Because of limited available therapies,the mortality of this disease remains high.Tumor-associated macrophages(TAM),the main immune cells in the tumor microenvironment,are involved in the regulation of the occurrence and development of pancreatic cancer.Specifically,TAM are involved in the proliferation,invasion,immune escape,and chemoresistance of pancreatic cancer cells,demonstrating potential in the targeted therapy of pancreatic cancer.In this paper,we summarize the TAM-based therapies including consuming TAM,reprogramming TAM,dynamic imaging of TAM with nanoprobes,and regulating the phagocytic ability of TAM for pancreatic cancer,aiming to provide a theoretical basis for developing new therapies for pancreatic cancer.


Subject(s)
Humans , Tumor-Associated Macrophages , Macrophages , Pancreatic Neoplasms/pathology , Tumor Microenvironment
12.
Article in Chinese | WPRIM | ID: wpr-981333

ABSTRACT

Lung cancer is one of the common malignant tumors in the world, and its incidence and mortality is increasing year by year. Interactions between tumor cells and immune cells in the tumor microenvironment(TME) affect tumor proliferation, infiltration, and metastasis. Tumor-associated macrophages(TAMs) are prominent components of TME, and they have dual regulation effects on malignant progression of lung cancer. The number, activity, and function of M2 macrophages are related to the poor prognosis of lung cancer, and M2 macrophages participate in tumor angiogenesis and immune escape. It has been proved that traditional Chinese medicines(TCMs) and their active ingredients can enhance the antitumor effects, reduce the toxicity of chemotherapy and radiotherapy, and prolong the survival rates of patients with cancer. This paper summarized the role of TAMs in the lung cancer initiation and progression, explored the molecular mechanism of TCM in regulating the recruitment, polarization phenotype, activity, and expression of related factors and proteins of TAMs, and discussed related signal pathways in the prevention and treatment of lung cancer based on the TCM theory of "reinforcing healthy qi and eliminating pathogen". This paper is expected to provide new ideas for the immunotherapy of targeted TAMs.


Subject(s)
Humans , Tumor-Associated Macrophages/pathology , Medicine, Chinese Traditional , Lung Neoplasms/genetics , Macrophages , Immunotherapy , Tumor Microenvironment
13.
Article in Chinese | WPRIM | ID: wpr-991169

ABSTRACT

Glioblastoma(GBM)is a lethal cancer with limited therapeutic options.Dendritic cell(DC)-based cancer vaccines provide a promising approach for GBM treatment.Clinical studies suggest that other immu-notherapeutic agents may be combined with DC vaccines to further enhance antitumor activity.Here,we report a GBM case with combination immunotherapy consisting of DC vaccines,anti-programmed death-1(anti-PD-1)and poly I:C as well as the chemotherapeutic agent cyclophosphamide that was integrated with standard chemoradiation therapy,and the patient remained disease-free for 69 months.The patient received DC vaccines loaded with multiple forms of tumor antigens,including mRNA-tumor associated antigens(TAA),mRNA-neoantigens,and hypochlorous acid(HOCl)-oxidized tumor lysates.Furthermore,mRNA-TAAAs were modified with a novel TriVac technology that fuses TAAs with a destabilization domain and inserts TAAs into full-length lysosomal associated membrane protein-1 to enhance major histo-compatibility complex(MHC)class Ⅰ and Ⅱ antigen presentation.The treatment consisted of 42 DC cancer vaccine infusions,26 anti-PD-1 antibody nivolumab administrations and 126 poly I:C injections for DC infusions.The patient also received 28 doses of cyclophosphamide for depletion of regulatory T cells.No immunotherapy-related adverse events were observed during the treatment.Robust antitumor CD4+and CD8+T-cell responses were detected.The patient remains free of disease progression.This is the first case report on the combination of the above three agents to treat glioblastoma patients.Our results suggest that integrated combination immunotherapy is safe and feasible for long-term treatment in this patient.A large-scale trial to validate these findings is warranted.

14.
Article in Chinese | WPRIM | ID: wpr-991728

ABSTRACT

Objective:To analyze the effects of apatinib on quality of life and immune function in older adult patients with advanced non-small cell lung cancer.Methods:A total of 187 older adult patients with advanced non-small cell lung cancer admitted to Taizhou Cancer Hospital from January 2017 to January 2021 were included in this study. They were divided into the control group ( n = 93) and the observation group ( n = 94). The control group was treated with carboplatin combined with pemetrexed and the observation group was treated with apatinib based on carboplatin and pemetrexed. Sign and symptoms remission was compared between the observation and control groups. The levels of tumor markers, immune function, and quality of life score were compared between the two groups before and after treatment. Results:Total remission rate in the observation group was significantly higher than that in the control group (88.30% vs. 69.89%, χ2 = 9.59, P < 0.05). After treatment, carbohydrate antigen 125, carbohydrate antigen 50, and carcinoembryonic antigen in the observation group were (16.25 ± 5.47) μg/L, (15.23 ± 3.27) μg/L and (5.91 ± 2.66) mg/L, respectively, which were significantly lower than (21.49 ± 6.61) μg/L, (19.11 ± 3.48) μg/L and (10.14 ± 2.73) mg/L in the control group ( t = 5.91, 7.86, 10.73, all P < 0.05). The percentage of CD3 + and CD4 + cells, and the ratio of CD4 +/CD8 + cells in the observation group were (69.34 ± 8.85)%, (38.15 ± 6.52)%, (1.40 ± 0.33), respectively, which were significantly higher than (64.51 ± 8.74)%, (33.55 ± 6.33)%, (1.23 ± 0.25) in the control group ( t = -3.75, -5.36, -3.97, all P < 0.05). Quality of life score was increased in each group ( P < 0.001). The amplitude of increase in quality of life score was greater in the observation group compared with the control group ( P < 0.001). Conclusion:Apatinib can effectively reduce the level of tumor markers and improve immune function in older adult patients with advanced non-small cell lung cancer and improve quality of life.

15.
Chinese Journal of Urology ; (12): 204-210, 2023.
Article in Chinese | WPRIM | ID: wpr-994005

ABSTRACT

Objective:To investigate the effect of tumor-associated macrophage(TAM) on proliferation of renal carcinoma cells and its related mechanism.Methods:The model of TAM was established by stimulating human monocytic leukemia cell line THP-1 with phorbol myristate acetate (PMA), bacterial endotoxin (LPS) and interferon-γ (IFN- γ). Then the TAM model was co-cultured with carcinoma cell lines ACHN and 786-O in vitro .The cytokines IL-6, TNF-α and IL-1β in TAM supernatant were detected by enzyme-linked immunosorbent assay (ELISA). MTT method was used to detect the proliferation of ACHN and 786-O cells treated with supernatant of TAM or TAM/Tocilizumab. Western blot was used to detect lactate dehydrogenase A (LDHA) expression of both renal cancer cells co-cultured with TAM or TAM/Tocilizumab. The ACHN and 786-O cells with LDHA-overexpression and LDHA-knockdown were cultured in TAM supernatant in vitro. The cell proliferation was detected by MTT and the relative proliferation rate was calculated.Results:THP-1 cells was differentiated into TAM through the treatment of 80 ng/ml PMA combined with 20 ng/ml LPS and 20 ng/ml IFN- γ.The expression rate of CD68, a cell surface marker on TAM, was (36.2 ±4.5)%. When TAM was co-cultured with ACHN cells, the results of ELISA showed that the secretion of IL-6 in the supernatant was significantly elevated compared with that in the supernatant when ACHN cells cultured alone [(138.0 ±12.4) pg/ml and (19.7±4.9) pg/ml], and the secretion of TNF- α [(122.5 ±14.2) pg/ml and (12.6 ±2.3) pg/ml] and IL-1 β [(89.2 ±6.4) pg/ml and (69.2 ±3.5) pg/ml] were also significantly increased. The secretion of IL-6 [(119.2 ±14.8) pg/ml and (17.1 ±3.3) pg/ml], TNF- α [(122.6 ±14.4) pg/ml and (45.7 ±7.2) pg/ml] and IL-1 β [(95.1 ±11.8) pg/ml and (88.2 ±12.7) pg/ml] in the supernatant were also significantly elevated when 786-O cells co-cultured with TAM compared with 786-O cells cultured alone. After treated with the supernatant of TAM for 72 hours, the relative proliferation rates of ACHN and 786-O cells [(128.6 ±21.4)% and (124.2 ±19.7)%] were significantly higher than that of the control group (100.0%). At the same time, the expression of LDHA in ACHN and 786-O cells increased significantly. After 72 hours of treatment with the supernatant of TAM combined with tocilizumab, the relative proliferation rates of ACHN and 786-O cells [(76.5±13.7)% and (74.8±12.5)%] were significantly lower than that of the control group(100.0%), and the expression of LDHA was also significantly decreased at the same time. The relative proliferation rates of ACHN and 786-O cells in LDHA overexpression group [(121.5 ±17.2)% and (122.7±21.6)%]were significantly higher than that in blank-vector-transfection group[(93.3±10.7)% and (89.8±11.2)%], while the relative proliferation rates in LDHA-knockdown group [(61.4±11.2)% and (58.0 ±10.6)% ]were significantly lower than that in blank-vector-transfection group.Conclusions:By secreting IL-6, TAM can up-regulate the expression of LDHA and promote the proliferation of renal cancer cells.

16.
Article in Chinese | WPRIM | ID: wpr-995260

ABSTRACT

Macrophages are important cells of the immune system. Tumor-associated macrophages are enriched macrophages near tumor cells or tissues. Their role is mainly to promote the construction of tumor inflammatory microenvironment and inhibit tumor immune response. Cell co-culture system is a symbiotic culture system formed by mimicking the internal environment of the body in vitro. The co-culture condition is relatively consistent with the environment in vivo, enabling better information exchange and material exchange between cells, which is a supplement to the monolayer cell culture and animal experiments. Tumor-associated macrophages and tumor cells co-exist in the tumor microenvironment. Thus, constructing a co-culture system for tumor-associated macrophages and tumor cells would be conducive to studying the antitumor effect of tumor-associated macrophages and developing new immunotherapy drugs. The co-culture system would provide a new direction for treating malignant tumors. This article mainly reviewed the co-culture patterns of macrophages and the antitumor effects of different phenotypes of macrophages, and highlighted the importance of using immunotherapy to treat malignant tumors in the tumor microenvironment.

17.
Article in Chinese | WPRIM | ID: wpr-1017987

ABSTRACT

Tumor-associated macrophages (TAMs) are the main immune cells in the tumor microenvironment, mainly divided into M1 type macrophages which are pro-inflammatory and anti-tumor and M2 type macrophages that are anti-inflammatory and can promote the growth of tumor. M2 macrophages play a crucial role in the occurrence, development and metastasis of tumor, are often closely related to poor prognosis, and have become an important target of tumor immunotherapy. Nanomedicine can achieve specific targeting of TAMs and improve drug safety. Therefore, the use of nanomedicine to regulate TAMs has broad application prospects. Using nanoparticles to deplete TAMs, inhibit their recruitment or reprogram M2 macrophages into M1 macrophages, or using TAMs to deliver nanomedicine has shown great potential for clinical application. In this paper, the role of TAMs-based nanomedicine in tumor immunotherapy was elaborated, and the existing problems and suggestions were discussed.

18.
Article in Chinese | WPRIM | ID: wpr-1018156

ABSTRACT

Tumor-associated macrophage (TAM) plays a key role in tumor progression and metastasis, and their properties are highly dependent on signaling stimuli in the tumor microenvironment (TME). Moreover, TAM, as a major player in tumor-related inflammation, is associated with the prognosis of multiple solid tumors. Immune checkpoint inhibitor (ICI) was found to significantly improve the survival prognosis of patients with microsatellite instability/mismatched repair deficient colorectal cancer. However, the efficacy of ICI as monotherapy is limited in the vast majority of CRC patients. Although the exact functions of TAM have not been fully elucidated, targeting TAM as a therapeutic strategy significantly enhances the efficacy of ICI in CRC, and TAM also demonstrates important value as predictive biomarkers for CRC prognosis.

19.
Article in Chinese | WPRIM | ID: wpr-1019421

ABSTRACT

Objective:To explore the influence of tumor-associated macrophages (TAMs) on endocrine resistance in breast cancer through the forkhead box M1 (FOXM1) /Wnt/ β-catenin pathway. Methods:Tamoxifen-resistant breast cancer cells were cultured, THP-1 cells were induced into macrophages (MΦ), and further induced into TAMs. After being cultured in the conditioned medium (CM) of MCF-7 cells for 24 hours, MΦ were defined as MS cells. After being cultured in the CM of MCF-7R cells for 24 hours, MΦ were defined as MR cells. MCF-7 cells, after being cultured in the CM of macrophages for 24 hours, were defined as MCF-7 (MΦ) cells. MCF-7 cells, after being cultured in the CM of MS cells for 24 hours, were defined as MCF-7 (MS) cells. MCF-7 cells, after being cultured in the CM of MR cells for 24 hours, were defined as MCF-7 (MR) cells. Cell viability and invasion ability were evaluated using CCK-8 and Transwell assays. The protein levels of CD163, Wnt1, β-catenin, and FOXM1 in different groups were examined by qRT-PCR and Western blot. Results:Compared to the MS group (mRNA: 1.49±0.12, protein: 1.15±0.12), CD163 expression was higher in the MR group (mRNA: 2.33±0.16, protein 1.52±0.11) ( t=7.28, P=0.002) ( t=3.94, P=0.017), indicating that tamoxifen-resistant breast cancer cells can induce polarization of more MΦ into TAMs. TAMs increased the expression of FOXM1 in breast cancer cells, which further activated the Wnt/ β-catenin pathway. Compared to the MCF-7 (MΦ) group, the MCF-7 (MS) and MCF-7 (MR) groups showed enhanced cell viability and invasion, with the most significant increase observed in the MCF-7 (MR) group. Compared with MCF-7 (MΦ) cells, the levels of Wnt1, β-catenin, and FOXM1 in MCF-7 (MS) and MCF-7 (MR) cells were significantly increased, with the highest levels observed in the MCF-7 (MR) group with the most TAM polarization. Compared to the MCF-7 group, both the MCF-7 (MR) and MCF-7+pcDNA-FOXM1 groups showed increased levels of Wnt1 and β-catenin, enhanced cell viability and invasion. Compared to the MCF-7 (MR) group, the MCF-7 (MR) + si-FOXM1 group showed reduced levels of Wnt1 and β-catenin, weakened cell viability and invasion. Conclusion:TAMs promote endocrine resistance in breast cancer by upregulating FOXM1 and activating the Wnt/ β-catenin pathway.

20.
Article in Chinese | WPRIM | ID: wpr-1029859

ABSTRACT

Tumor-associated autoantibodies (TAAS), as cancer biomarkers, have attracted special attention. In recent years, increasing evidence has indicated that TAAS shows an elevated level in the early stage of human malignancies, and examination of TAAS in patients′ clinical specimens has a good predictive value for a variety of cancers′ early diagnosis. The mechanism of TAAS and its clinical application will be introduced, and the advantages and problems of tumor autoantibodies as markers will be expounded in this article.

SELECTION OF CITATIONS
SEARCH DETAIL