Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Language
Year range
1.
Journal of Medical Biomechanics ; (6): E290-E296, 2023.
Article in Chinese | WPRIM | ID: wpr-987949

ABSTRACT

Objective Aiming at the medial prosthetic loosening failure and lateral cartilage degeneration after unicompartmental knee arthroplasty ( UKA), the effects of prosthetic installation errors of joint line in UKA on knee contact mechanics and kinematics during different physiologic activities were studied using musculoskeletal multi-body dynamic method. Methods Taking the medial natural joint line as 0 mm error, six installation errors ofjoint line including ±2 mm, ±4 mm and ±6 mm were considered respectively, and seven musculoskeletal multi body dynamic models of medial UKA were established, to comparatively study the variations in knee contact mechanics and kinematics during walking and squatting. Results At 70% of walking gait cycle, compared with 0 mm error, the medial prosthetic contact force was increased by 127. 3% and the contact force of the lateral cartilage was decreased by 12. 0% under 2 mm elevation in joint line, the medial prosthetic contact force was close to 0 N, but the lateral cartilage contact forces were increased by 10. 1% under 4 mm reduction in joint line. The tibiofemoral total contact forces were increased by 19. 7% and decreased by 14. 2% under 2 mm elevation and 2 mm reduction in joint line, respectively. At the 100°knee flexion during squatting, compared with 0 mm error, the medial prosthetic contact force and the tibiofemoral total contact force increased by 31. 6% and 11. 1% under 2 mm elevation in joint line, and decreased by 24. 5% and 8. 5% under 2 mm reduction in joint line, respectively. The change in the lateral cartilage contact force was not marked. Moreover, at 70% of walking gait cycle, the varus angle decreased, the internal rotation and the anterior translation increased along with the elevation of joint line in UKA, while it was just the opposite along with the reduction of joint line in UKA. The trends of the varus valgus movement and anterior-posterior translation during squatting were consistent with those during swing phase of walking, but the trend of the internal-external rotation was opposite. Conclusions In order to reduce the risk of medial prosthetic loosening failure and lateral cartilage degeneration, it is recommended that the installation error of joint line in UKA should be controlled in the range of -2 mm to +2 mm. This study provides theoretical basis for UKA clinical failure caused by changes in joint line

2.
Journal of Medical Biomechanics ; (6): E473-E478, 2022.
Article in Chinese | WPRIM | ID: wpr-961753

ABSTRACT

Objective To analyze interface stress of cemented tibial prosthesis platform and determine the interface stress damage area, so as to provide references for stress failure of tibial platform in clinical single condylar replacement. Methods The full cycle gait was simulated by human dynamics software to obtain the load-bearing condition of knee joint. A complete model of the knee joint was established by medical imaging and three-dimensional (3D) reconstruction software, and unicompartmental replacement was performed. The distribution of interfacial stress of tibial prosthesis platform after single condylar replacement was analyzed by finite element method. ResultsIn gait, force and angle of the knee joint changed periodically with time, a cycle lasted 1.3 s, and the peak of knee joint resultant force was 760 N. The maximum shear stress of the interface was 11.82 MPa and the maximum tensile stress was 6.849 MPa, both occurred at inner front end of the corner of prosthesis cement interface. The maximum interface stress of titanium alloy prosthesis was lower than that of stainless steel prosthesis. Conclusions The decrease in elastic modulus of prosthesis can reduce the maximum principal stress at the interface. Considering the interface stress, titanium alloy prosthesis is better than stainless steel prosthesis. The area of tibial prosthetic platform interface damage is mainly at the medial anterior and posterior corners and lateral middle ends,so improving the ability of prosthesis cement bonding in this area can prevent the loosening of tibial prosthesis of unicompartmental knee joint.The findings have practical implications for the prevention of tibial prosthetic platform loosening after unicompartmental knee arthroplasty in clinic.

3.
Journal of Medical Biomechanics ; (6): E633-E637, 2021.
Article in Chinese | WPRIM | ID: wpr-904448

ABSTRACT

Objective To investigate the effect of medial unicompartmental knee arthroplasty (UKA) surgery on knee biomechanics during stair ascent. Methods Nine osteoarthritis patients who received fixed-bearing medial UKA participated in this study. All patients completed pre-surgical (3 weeks before UKA surgery) and post-surgical [(7±2) months after UKA surgery] test. Their synchronized biplane radiographs during stair ascent were collected. Motion of the femur, tibia, and implants were tracked using an automated volumetric model-based tracking process that matched subject-specific 3D models of the bones and prostheses to the biplane radiographs with sub-millimeter accuracy. Anatomic coordinate systems were created within the femur and tibia and used to calculate tibiofemoral kinematics. Additional outcome measures included the center of contact in the medial and lateral compartments, and the lateral compartment dynamic joint space. Results The UKA knee was in 4.8° varus compared with the pre-surgical contralateral knee. The post-surgical UKA knee was in 3.1°valgus compared with the pre-surgical knee. The post-surgical UKA knee was 4.4° externally rotated compared with the pre-surgical contralateral knee. However, the medial tibia contact center of the UKA knee moved posteriorly 2.5 mm compared with that of the contralateral knee (P0.05). Conclusions UKA can effectively improve varus of the knee joint and restore biomechanical characteristics of UKA knee rotation, without affecting lateral compartment joint space. However, changes are found in contact center of the medial tibia compartment of the UKA knee after surgery.

4.
Journal of Medical Biomechanics ; (6): E618-E624, 2021.
Article in Chinese | WPRIM | ID: wpr-904446

ABSTRACT

Objective To establish the three-dimensional (3D) finite element model of unicompartmental knee arthroplasty (UKA) with 3° and 7° posterior tibial slope at different knee flexion angles, and to study biomechanical properties and prosthetic wear of the knee joints with two types of posterior tibia slope and their effects on knee function. Methods Combining CT and MRI images of human knee joints with the 3rd-generation Oxford prosthesis, the finite element UKA model with 3° and 7° posterior tibia slope were established. The 1 kN load was applied to center point of the medial and lateral condyles of the femur to simulate the standing load of human body. The maximum stresses and distributions of the prosthesis and articular cartilage at different knee flexion angles were analyzed. ResultsThe maximum stress of the meniscus liner with 3° posterior tibia slope at 0°, 30°, 60°, 90°, 120° knee flexion angles increased by 28.06%, 68.99%, 19.45%, 21.06% and 53.38%, the distribution area was concentrated from the side of the meniscus liner to the central area, and the stress concentration was obvious at 120° knee flexion. The maximum stress of prosthesis with 3° posterior tibia slope was greater than that with 7 ° posterior tibia slope. The expansion of stress concentration area would cause wear and loosening of the prosthesis, contact stress and concentration area of the articular cartilage would subsequently increase with posterior tibia slope increasing, and stress concentration would be more obvious at high knee flexion angles. Conclusions Tibial prosthesis has the higher stress and greater wear under the condition of 3° posterior tibia slope than 7° posterior tibia slope. The research findings provide theoretical basis for the UKA design in clinic.

5.
Journal of Medical Biomechanics ; (6): E070-E076, 2020.
Article in Chinese | WPRIM | ID: wpr-804512

ABSTRACT

Department of Orthopedics, Yang Pu Hospital Affiliated to Tongji University,

6.
Journal of Medical Biomechanics ; (6): E186-E192, 2019.
Article in Chinese | WPRIM | ID: wpr-802491

ABSTRACT

Objective Aiming at solving the problems of pain on the anteromedial tibia, tibial component loosening and osteoarthritis progression after unicompartmental knee arthroplasty (UKA), the influence of different geometric shapes of tibial component pegs on stress distributions in tibia was analyzed by finite element method. Methods The finite element models with UKA were established and validated. Geometric shapes of tibial component were designed. Under the same loading condition, the tibial components with double-peg, single-keel, double-keel and cross-star were studied for finite element analysis and compared with intact model, so as to evaluate the influence of tibial component with different shapes on stresses of cortical bone in anteromedial tibia, cancellous bone under tibial component and cartilage in contralateral tibia. Results Compared with the intact model, the peak stress of cortical bone in anteromedial tibia with double-peg, single-keel, double-keel and cross-star tibial components increased by 56.1%, 55.9%, 54.5% and 68-4%, respectively. The peak stress of cancellous bone under tibial component with single-keel and double-keels decreased by 8.1% and 15.6% respectively, while the peak stress of cancellous bone under tibial component with double-peg and cross-star increased by 67-9% and 121-5%, which were higher than the fatigue yield stress of cancellous bone. The peak stress of cartilage in contralateral tibia with double-peg, single-keel, double-keel and cross-star tibial components decreased by 42.1%, 26.6%, 24.2% and 28.5%, respectively. ConclusionsThe load distribution of the medial and lateral tibia changed after UKA operation, and a greater load was observed on the replacement side. Single-keel and double-keel tibial components were more effective in reducing stresses on cortical bone in anteromedial tibia and cancellous bone, while the stress distribution in tibia with single-keel tibial component was closer to that of the intact tibia. The research findings can provide theoretical references for designing single-keel tibial component of unicompartmental knee prosthesis which conforms to better mechanical properties of the knee joint.

SELECTION OF CITATIONS
SEARCH DETAIL