Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Acta Pharmaceutica Sinica B ; (6): 135-143, 2019.
Article in English | WPRIM | ID: wpr-774996

ABSTRACT

Obesity is a worldwide epidemic. Promoting browning of white adipose tissue (WAT) contributes to increased energy expenditure and hence counteracts obesity. Here we show that cordycepin (Cpn), a natural derivative of adenosine, increases energy expenditure, inhibits weight gain, improves metabolic profile and glucose tolerance, decreases WAT mass and adipocyte size, and enhances cold tolerance in normal and high-fat diet-fed mice. Cpn markedly increases the surface temperature around the inguinal WAT and turns the inguinal fat browner. Further investigations show that Cpn induces the development of brown-like adipocytes in inguinal and, to a less degree, epididymal WAT depots. Cpn also increases the expression of uncoupling protein 1 (UCP1) and other thermogenic genes in WAT and 3T3-L1 differentiated adipocytes, in which AMP-activated protein kinase (AMPK) plays an important role. Our results provide novel insights into the function of Cpn in regulating energy balance, and suggest a potential utility of Cpn in the treatment of obesity.

2.
Experimental & Molecular Medicine ; : e78-2014.
Article in English | WPRIM | ID: wpr-72397

ABSTRACT

Brown adipose tissue (BAT) is a specialized thermoregulatory organ that has a critical role in the regulation of energy metabolism. Specifically, energy expenditure can be enhanced by the activation of BAT function and the induction of a BAT-like catabolic phenotype in white adipose tissue (WAT). Since the recent recognition of metabolically active BAT in adult humans, BAT has been extensively studied as one of the most promising targets identified for treating obesity and its related disorders. In this review, we summarize information on the developmental origin of BAT and the progenitors of brown adipocytes in WAT. We explore the transcriptional control of brown adipocyte differentiation during classical BAT development and in WAT browning. We also discuss the neuronal control of BAT activity and summarize the recently identified non-canonical stimulators of BAT that can act independently of beta-adrenergic stimulation. Finally, we review new findings on the beneficial effects of BAT activation and development with respect to improving metabolic profiles. We highlight the therapeutic potential of BAT and its future prospects, including pharmacological intervention and cell-based therapies designed to enhance BAT activity and development.


Subject(s)
Animals , Humans , Adipocytes/cytology , Adipogenesis , Adipose Tissue, Brown/cytology , Obesity/therapy
SELECTION OF CITATIONS
SEARCH DETAIL