Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters








Language
Year range
1.
Chinese Journal of Biotechnology ; (12): 946-956, 2017.
Article in Chinese | WPRIM | ID: wpr-242216

ABSTRACT

Macrobrachium nipponensis is delicious and has high economic value, but its susceptibility to white-spot syndrome virus (WSSV) is unknown. Susceptibility, morbidity, and multiplication of WSSV in M. nipponense were studied by epidemiological survey, infection experiment and qPCR. M. nipponense was the natural host of WSSV, and the natural carrying rate was about 8.33%. M. nipponense could be infected with WSSV via oral administration, muscle injection and immersion, and the cumulative infection rate of 10 d exposure was 100%, and the cumulative mortality rates were 100%, 75% and 0%, respectively. The infection of WSSV is fast by muscle injection. The virus content after 5 day's injection is 1 000 times higher than that of the first day of infection, and the mortality rate reached 100% after 8 days. The median lethal dose (LD₅₀) measured as the mortality of infected M. nipponense via injection indicated the LD₅₀ in the concentration of WSSV of 2.71×10⁵ virions/μL. In shrimp farming, M. nipponense can be infected by ingesting WSSV infected shrimp or dead shrimp, and also by soaking in WSSV-containing water and thus become a vector, consequently affecting the spread and pathogenicity of WSSV.

2.
Virologica Sinica ; (6): 67-71, 2011.
Article in Chinese | WPRIM | ID: wpr-382727

ABSTRACT

White spot syndrome virus(WSSV), Taura syndrome virus(TSV)and Infectious hypodermal and haematopoietic necrosis virus(IHHNV)are three shrimp viruses responsible for major pandemics affecting the shrimp farming industry. Shrimps samples were collected from 12 farms in Zhejiang province, China, in 2008 and analyzed by PCR to determine the prevalence of these viruses. From the 12 sampling locations, 8 farms were positive for WSSV, 8 for IHHNV and 6 for both WSSV and IHHNV. An average percentage of 57.4% of shrimp individuals were infected with WSSV, while 49.2% were infected with IHHNV. A high prevalence of co-infection with WSSV and IHHNV among samples was detected from the following samples: Bingjiang(93.3%), liuao(66.7%), Jianshan(46.7%)and Xianxiang(46.7%). No samples exhibited evidence of infection with TSV in collected samples. This study provides comprehensive information of the prevalence of three shrimp viruses in Zhejiang and may be helpful for disease prevention control in this region.

3.
Virologica Sinica ; (6): 260-266, 2011.
Article in Chinese | WPRIM | ID: wpr-423780

ABSTRACT

The gene encoding the VP28 envelope protein of White spot syndrome virus (WSSV)was cloned into expression vector pET-30a and transformed into the Escherichia coli strain BL21.After induction,the recombinant VP28 (rVP28) protein was purified and then used to immunize Balb/c mice for monoclonal antibody (MAb) production.It was observed by immuno-electron microscopy the MAbs specific to rVP28 could recognize native VP28 target epitopes of WSSV and dot-blot analysis was used to detect natural WSSV infection.Competitive PCR showed that the viral level was approximately 104 copies/mg tissue in the dilution of gill homogenate of WSSV-infected crayfish at the detection limit of dot-blot assay.Our results suggest that dot-blot analysis with anti-rVP28 MAb could rapidly and sensitively detect WSSV at the early stages of WSSV infection.

4.
Virologica Sinica ; (6): 71-76, 2009.
Article in Chinese | WPRIM | ID: wpr-406741

ABSTRACT

The nucleocapsid protein VP15 of white spot syndrome virus (WSSV) is a basic DNA-binding protein. Three canonical bipartite nuclear localization signals (NLSs), called NLS1 (aa 11-27), NLS2 (aa 33-49) and NLS3 (44-60), have been detected in this protein, using the ScanProsite computer program. To determine the nuclear localization sequence of VP15, the full-length open reading frame, or the sequence of one of the three NLSs, was fused to the green fluorescent protein (GFP) gene, and transiently expressed in insect Sf9 cells. Transfection with full-length VP15 resulted in GFP fluorescence being distributed exclusively in the nucleus. NLS 1 alone could also direct GFP to the nucleus, but less efficiently. Neither of the other two NLSs (NLS2 and 3) was functional when expressed alone, but exhibited similar activity to NLS1 when they were expressed as a fusion peptide. Furthermore, a mutated VP15, in which the two basic amino acids (11RR12) of NLSI were changed to two alanines (11AA12), caused GFP to be localized only in the cytoplasm of Sf9 cells. These results demonstrated that VP15, as a nuclear localization protein, needs cooperation between its three NLSs, and that the two residues (11RR12) of NLS1 play a key role in transporting the protein to the nucleus.

5.
Virologica Sinica ; (6): 157-166, 2008.
Article in Chinese | WPRIM | ID: wpr-407133

ABSTRACT

White spot syndrome virus (WSSV), a unique member within the virus family Nimaviridae, is the most notorious aquatic virus infecting shrimp and other crustaceans and has caused enormous economic losses in the shrimp farming industry worldwide. Therefore, a comprehensive understanding of WSSV morphogenesis, structural proteins, and replication is essential for developing prevention measures of this serious parasite. The viral genome is approximately 300kb and contains more than 180 open reading frames (ORF). However, most of proteins encoded by these ORF have not been characterized. Due to the importance of WSSV structural proteins in the composition of the virion structure, infection process and interaction with host cells, knowledge of structural proteins is essential to understanding WSSV entry and infection as well as for exploring effective prevention measures. This review article summarizes mainly current investigations on WSSV structural proteins including the relative quantities, localization, function and protein-protein interactions. Traditional proteomic studies of 1D or 2D gel electrophoresis separations and mass spectrometry (MS) followed by database searches have identified a total of 39 structural proteins. Shotgun proteomics and iTRAQ were initiated to identify more structural proteins. To date, it is estimated that WSSV is assembled by at least 59 structural proteins, among them 35 are defined as the envelope fraction (including tegument proteins) and 9 as nucleocapsid proteins. Furthermore, the interaction within several major structural proteins has also been investigated. This identitification and characterization of WSSV protein components should help in the understanding of the viral assembly process and elucidate the roles of several major structural proteins.

6.
Virologica Sinica ; (4): 21-25, 2007.
Article in Chinese | WPRIM | ID: wpr-634208

ABSTRACT

BALB/c mice were immunized with purified White spot syndrome virus (WSSV).Six monoclonal antibody cell lines were selected by ELISA with VP28 protein expressed in E.coll in vitro neutralization experiments showed that 4 of them could inhibit the virus infection in crayfish.Westernblot suggested that all these monoclonal antibodies were against the conformational structure of VP28.The monoclonal antibody 7B4 was labeled with colloidal gold particles and used to locate the VP28 on virus envelope by immunogold labeling.These monoclonal antibodies could be used to develop immunological diagnosis methods for WSSV infection.

7.
Virologica Sinica ; (4): 61-67, 2007.
Article in Chinese | WPRIM | ID: wpr-635245

ABSTRACT

We have developed a sensitive and rapid lateral-flow immunoassay (LFIA) for WSSV,using colloidal gold as an indicator.The fusion protein,VP (19+28),was expressed in E.coli,purified and used to prepare polyclonal antibodies.The purified anti-VP (19+28) IgG were conjugated with colloidal gold.Unconjugated anti-VP (19+28) IgG and goat anti-rabbit IgG were immobilized on nitrocellulose membranes.After assembly,three groups (5 individual animals in each group) of shrimp samples were tested which included healthy,moribund and dead shrimps.For each group,three different tissues (body juices,gills and hepatopancreas) were tested at the same time.In parallel,all the samples were also analyzed using PCR for comparison.Out of 45 samples tested,30 were detected as positive while 15 were classified as negative.The results of LFIA correlate with those obtained by the PCR analysis,indicating that these two detection methods have the same efficacy in the limited number of samples tested in this preliminary study.

SELECTION OF CITATIONS
SEARCH DETAIL