ABSTRACT
OBJECTIVE@#To propose a diffusion tensor field estimation network based on 3D U-Net and diffusion tensor imaging (DTI) model constraint (3D DTI-Unet) to accurately estimate DTI quantification parameters from a small number of diffusion-weighted (DW) images with a low signal-to-noise ratio.@*METHODS@#The input of 3D DTI-Unet was noisy diffusion magnetic resonance imaging (dMRI) data containing one non-DW image and 6 DW images with different diffusion coding directions. The noise-reduced non-DW image and accurate diffusion tensor field were predicted through 3D U-Net. The dMRI data were reconstructed using the DTI model and compared with the true value of dMRI data to optimize the network and ensure the consistency of the dMRI data with the physical model of the diffusion tensor field. We compared 3D DTI-Unet with two DW image denoising algorithms (MP-PCA and GL-HOSVD) to verify the effect of the proposed method.@*RESULTS@#The proposed method was better than MP-PCA and GL-HOSVD in terms of quantitative results and visual evaluation of DW images, diffusion tensor field and DTI quantification parameters.@*CONCLUSION@#The proposed method can obtain accurate DTI quantification parameters from one non-DW image and 6 DW images to reduce image acquisition time and improve the reliability of quantitative diagnosis.
Subject(s)
Diffusion Tensor Imaging , Reproducibility of Results , Diffusion Magnetic Resonance Imaging , Algorithms , Signal-To-Noise RatioABSTRACT
Objective:To establish a three-dimensional (3D) U-net-based deep learning model, and to predict the 3D dose distribution in CT-guided cervical cancer brachytherapy by using the established model.Methods:The brachytherapy plans of 114 cervical cancer cases with a prescription dose of 6 Gy for each case were studied. These cases were divided into training, validation, and testing groups, including 84, 11, and 19 patients, respectively. A total of 500 epochs of training were performed by using a 3D U-net model. Then, the dosimetric parameters of the testing groups were individually evaluated, including the mean dose deviation (MDD) and mean absolute dose deviation (MADD) at the voxel level, the Dice similarity coefficient (DSC) of the volumes enclosed by isodose surfaces, the conformal index (CI) of the prescription dose, the D90 and average dose Dmean delivered to high-risk clinical target volumes (HR-CTVs), and the D1 cm 3 and D2 cm 3 delivered to bladders, recta, intestines, and colons, respectively. Results:The overall MDD and MADD of the 3D dose matrix from 19 cases of the testing group were (-0.01 ± 0.03) and (0.04 ± 0.01) Gy, respectively. The CI of the prescription dose was 0.70 ± 0.04. The DSC of 50%-150% prescription dose was 0.89-0.94. The mean deviation of D90 and Dmean to HR-CTVs were 2.22% and -4.30%, respectively. The maximum deviations of the D1 cm 3 and D2 cm 3 to bladders, recta, intestines, and colons were 2.46% and 2.58%, respectively. The 3D U-net deep learning model took 2.5 s on average to predict a patient′s dose. Conclusions:In this study, a 3D U-net-based deep learning model for predicting 3D dose distribution in the treatment of cervical cancer was established, thus laying a foundation for the automatic design of cervical cancer brachytherapy.