ABSTRACT
The aim of this study was to optimize by response surface design, the extraction of the leaf essential oil (EO) from Minthostachys mollis [HBK] Griseb., grown in Ecuador, using steam distillation. The factors used were extraction time (XTIE) of 60, 105 and 150 min and plant material/water ratio (XRMA) of 1:3, 1:4 and 1:5. The optimal combination was reached with XRMA 1:5 and XTIE 150 min, obtaining a process yield of 0.67%. The chemical composition of the EO analyzed by GC - MS was determined, where the main compounds were carvacryl acetate (44.01%), carvacrol (16.51%) and menthone (8.20%). The anti oxidant capacity of EO was evaluated using the FRAP and ABTS methodologies, with an IC 50 243.21 µmol Fe 2+ /g and 0.12 mg/mL, respectively. In addition, the antimicrobial activity of EO was found against Pseudomonas aeruginosa , Salmonella enterica , Escherich ia coli and Staphylococcus aureus .
El objetivo del estudio fue optimizar, mediante un diseño de superficie respuesta, la extracción d el aceite esencial (AE) de hojas de Minthostachys mollis [HBK] Griseb. del Ecuador, mediante destilación por arrastre de vapor. Los factores fueron el tiempo de extracción (XTIE) de 60, 105 y 150 min, y relación de material vegetal/ agua destilada (XRMA) d e 1:3, 1:4 y 1:5. La combinación óptima se logró con XTIE 150 min y XRMA 1:5 para un rendimiento de 0,67%. Se determinó la composición química del AE por GC - MS donde los compuestos mayoritarios fueron acetato de carvacrilo (44,01%), carvacrol (16,51%) y me ntona (8,20%). Se evaluó la capacidad antioxidante del AE por las metodologías FRAP y ABTS, con CI 50 de 243,21 µmol Fe 2+ /g y 0,12 mg/mL, respectivamente. Además, se demostró la actividad antimicrobiana contra Pseudomonas aeruginosa , Salmonella enterica , Es cherichia coli y Staphylococcus aureus .
Subject(s)
Oils, Volatile/chemistry , Lamiaceae/chemistry , Anti-Bacterial Agents/chemistry , Antioxidants/chemistry , Bacteria/drug effects , Oils, Volatile/pharmacology , Plant Leaves , Ecuador , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacologyABSTRACT
Oleanolic acid (OA), a pentacyclic triterpenoid, exhibits a broad spectrum of biological activities, including antitumor, antiviral, antibacterial, anti-inflammatory, hepatoprotective, hypoglycemic, and hypolipidemic effects. Since its initial isolation and identification, numerous studies have reported on the structural modifications and pharmacological activities of OA and its derivatives. Despite this, there has been a dearth of comprehensive reviews in the past two decades, leading to challenges in subsequent research on OA. Based on the main biological activities of OA, this paper comprehensively summarized the modification strategies and structure-activity relationships (SARs) of OA and its derivatives to provide valuable reference for future investigations into OA.
Subject(s)
Oleanolic Acid , Structure-Activity Relationship , Anti-Inflammatory Agents/pharmacology , Triterpenes , Anti-Bacterial Agents/pharmacologyABSTRACT
Moringa oleifera is regarded as a significant medicinal plant across the board and is grown in many parts of the world. It is employed in a broad range of medical treatments that attempt to improve the nutritional qualities that are already present in our bodies. This is due to the fact that it has a particularly high nutritive content. Throughout this conversation, we have addressed a broad variety of biological activities, such as those that are anti-inflammatory, antibacterial, antifungal, antipyretic, antispasmodic and many more. In addition, we have shown that it is possible to manufacture a variety of metal nanoparticles by using the extract of different components of Moringa oleifera as the starting material. The main goal of this part of the study was to figure out how important Moringa oleifera is in the field of nano-medicine.
ABSTRACT
In this study, five polysaccharides from Lycium barbarum(LBPs)(LBP-1-LBP-5) were selectively extracted by different extraction methods, and the chemical composition, structural characteristics, and biological activities of LBPs were explored. The results of chemical composition analysis showed that alkaloids were not detected in the five LBPs. The total polysaccharide content was(81.95%±1.6%)-(92.96%±0.76%), the uronic acid content was(8.26%±0.46%)-(24.81%±0.46%), and the protein content was(0.06%±0.03%)-(1.35%±0.13%). The monosaccharide compositions of the five LBPs were basically same, mainly including glucose, xylose, and galactose. However, there was significant difference in the content ratio of different monosaccharide. The results of infrared spectra analysis indicated that the five LBPs had typical infrared spectral characteristics of polysaccharides. The results of nuclear magnetic resonance characteristic spectrum analysis revealed that the five LBPs had two configurations of α and β. Meanwhile, there were triple helix structures in LBP-2, LBP-3, and LBP-4, which enhanced the activities of polysaccharides. The results of activities screening suggested that the biological activities of the five LBPs were significantly different. LBP-3 showed the highest lipid oxidation clearance rate, and its antioxidant activity was equivalent to that of the positive control group. The inhibitory rate of LBP-4 on α-amylase and its activation rate of alcohol dehydrogenase were better than those of other fractions, and the inhibitory rate of LBP-4 on α-amylase was slightly higher than that of the positive control group when the mass concentration was 10 g·L~(-1). LBP-2 showed stronger inhibitory activity against α-glucosidase and hyaluronidase. This study provides references for the precise development and utilization of LBPs.
Subject(s)
Drugs, Chinese Herbal/chemistry , Lycium/chemistry , Antioxidants/pharmacology , Polysaccharides/chemistry , MonosaccharidesABSTRACT
Abstract The phenolic compound content, the antioxidant and α-amylase inhibition potentials of different extracts of the Plectranthus amboinicus, P. barbatus and P. ornatus were evaluated. We also evaluated the influence of plant growth and harvest time on the chemical composition of the essential oil (EO) of P. amboinicus, its antioxidant and anti-Candida activities and the α-amylase and lipoxygenase inhibitions. The turbo-extract of P. barbatus showed the greatest phenolic compound content and antioxidant activity. No α-amylase inhibition activity was observed in the analyzed extracts, but the turbo-extraction and refluxing extracts possessed high antioxidant activities. Protected cultivation and morning harvest conditions gave the best antioxidant activities, which was associated to the highest carvacrol content. P. amboinicus EO antioxidant activity could contribute to the reduction of oxidative stress in diabetes. Causal Candida strains of diabetic foot ulcers showed sensitivity to P. amboinicus EO. C. albicans and C. dubliniensis were the most sensitive of the selected Candida strains. Turbo-extracts or refluxing of the three species extracts and the EO of P. amboinicus should be considered as a potential candidate for the management the complications of type 2 diabetes.
Subject(s)
Candida/classification , Oils, Volatile/analysis , Plant Extracts/analysis , Triage/classification , Plectranthus/adverse effects , Arachidonate 5-Lipoxygenase/pharmacology , Diabetes Mellitus, Type 2/pathology , Antioxidants/analysisABSTRACT
Six compounds were isolated from aqueous extract of wine-processed Corni Fructus through silica gel, ODS column chromatography, Sephadex LH-20 gel column chromatography, reverse phase preparative HPLC and other chromatographic separation technologies. Their structures were identified with multiple spectroscopical methods including HR-ESI-MS, UV, IR, NMR and ECD and so on. Their structures were established as pinoresinoside B(1), cornusgallicacid A(2),(+)-isolariciresinol-9'-O-β-glucopyranoside(3),(-)-isolariciresinol 3α-O-β-D-glucopyranoside(4),(7R,8S)-dihydrodehydrodiconiferyl alcohol 9-O-β-D-glucopyranoside(5), and(-)-seco isolariciresinol-9'-O-β-D-glucopyranoside(6). Among them, compounds 1 and 2 were two new compounds. The biological activity evaluation results showed that compounds 2 and 6 had strong DPPH free radical scavenging ability, with EC_(50) values of(4.18±1.96) and(21.45±1.19) μmol·L~(-1), respectively. Compounds 1 and 2 had protective effects on H_2O_2-induced oxidative damage in NRK-52E cells in a dose-dependent manner, and the cell survival rate of compound 2 at 100 μmol·L~(-1) was 96.09%±1.77%.
Subject(s)
Cornus , Wine , Naphthols , LigninABSTRACT
More than 500 species of Hypericum are located throughout Europe, North America, North Africa, and Asia. These plants have a long history of employment in folk medicine as anti-inflammatory, antibacterial, and antiviral medicines, as well as for the treatment of burns, gastrointestinal problems, and depression. The most significant species of this genus are Hypericum perforatum L. and Hypericum triquetrifolium Turra because of their pharmacological activities. Hypericum perforatum L. and Hypericum triquetrifolium are widely known for their efficacy in reducing inflammation and improving wound healing. The main reason these plants have been used for treatment of mild to moderate depression. Nevertheless, some similar species are also utilized in conventional medicine and have been previously analyzed for their biological activity and phytochemical composition. The main classes of active substances are found in Hypericum species, including naphthodianthrones (such as hypericin and pseudohyperricin), phloroglucinols (such as hyperforin), flavonoids (such as rutin, hyperoside, isoquercitrin, quercitrin, and amentoflavone), and phenylpropanoids (chlorogenic acid). This review's objective is to provide a summary of the most recent research on potential medicinal uses for Hypericum perforatum L., and Hypericum triquetrifolium Turra.
ABSTRACT
Prodigiosin is a red pigment with a pyrrolylpyrromethane skeleton. It is mainly produced by bacterial strains belonging to the Serratia genus, but also by some other genera, including Streptomyces and Vibrio. Within the genus Serratia, the pigment is generally produced as a virulence factor. However, it also has many important beneficial biological activities such as immunosuppressive and anti- proliferative activities. Moreover, the pigment has many industrial applications in textile and cosmetics. In this mini-review, we discuss the genetic and molecular mechanisms supporting prodigiosin synthesis and production from the Serratia genus, as well as its potential applications.
ABSTRACT
Objective: To characterize the antifungal activity of methanolic leaf extract of Calotropis gigantea alone or in combination with amphotericin B against invasive pulmonary aspergillosis in mice. Methods: GC/MS was used for analysis of active constituents of Calotropis gigantea extract. Spore germination assay and broth micro-dilution method were used to determine antifungal potential of Calotropis gigantea/amphotericin B against Aspergillus fumigatus. Neutropenic mice were randomly assigned into 5 groups: group 1 was neutropenic (control); group 2 was infected with Aspergillus fumigatus; group 3 was infected with Aspergillus fumigatus, and treated with Calotropis gigantea extract; group 4 was infected with Aspergillus fumigatus and treated with amphotericin B; group 5 was infected with Aspergillus fumigatus and treated with both Calotropis gigantea extract and amphotericin B. Fresh lung tissues were histopathologically examined. Fungal burden and gliotoxin concentration were evaluated in lung tissues. Catalase, superoxide dismutase, and malondialdehyde content were determined in lung tissues. Myeloperoxidase, tumor necrosis factor-alpha, interleukin-1, and interleukin-17 were also estimated by the sandwich enzyme-linked immuno-sorbent assay. Results: Calotropis gigantea/amphotericin B had a minimum inhibitory concentration and minimum fungicidal concentration of 80 and 160 μg/mL, respectively, for Aspergillus fumigatus. Additionally, Calotropis gigantea/amphotericin B significantly reduced lung fungal burden by 72.95% and inhibited production of gliotoxin in lung tissues from 6 320 to 1 350 μg/g lung. Calotropis gigantea/amphotericin B reduced the oxidative stress of the lung via elevating the activity of antioxidant enzymes and decreasing the levels of lipid peroxidation. Myeloperoxidase activity and the production of pro-inflammatory cytokines were also significantly reduced. Scanning electron microscopy revealed deteriorations in the hyphae ultrastructure in Calotropis gigantea/amphotericin B treated Aspergillus fumigatus and leak of cellular components after damage of the cell wall. In vivo study revealed the suppression of lung tissue damage in mice of invasive pulmonary aspergillosis, which was improved with Calotropis gigantea/amphotericin B compared to the control group. Conclusions: Calotropis gigantea/amphotericin B is a promising treatment to reduce lung fungal burden and to improve the drugs' therapeutic effect against invasive pulmonary aspergillosis.
ABSTRACT
Objective: To investigate the effect and its underlying molecular mechanisms of essential oil from Saussurea costus in esophageal cancer cell line Eca109. Methods: The chemical composition of essential oil from Saussurea costus was investigated by gas chromatography-mass spectrometry (GC-MS). The anti-proliferative, anti-migrative, and apoptotic effects of essential oil from Saussurea costus against Eca109 cells were analyzed. Moreover, the expression of proteins associated with cell cycle, metastasis, and apoptosis was determined. Results: GC-MS analysis showed that essential oil from Saussurea costus was predominantly comprised of sesquiterpenes. Saussurea costus essential oil inhibited the viability of Eca109 cells in a dose-and time-dependent manner with IC 50 values of (24.29±1.49), (19.16±2.27) and (6.97±0.86) μg/mL at 12, 24, and 48 h, respectively. The expression levels of target proteins in the cell cycle (phase G 1 /S), including cyclin D1, p21, and p53, were affected by Saussurea costus essential oil. The essential oil also downregulated the expression of metastasis-related proteins MMP-9 and MMP-2. Moreover, it induced apoptosis of Eca109 cells through the mitochondrial pathway, as well as inhibition of STAT3 phosphorylation. Conclusions: The essential oil from Saussurea costus exhibited anti-proliferative, anti-migrative, and apoptotic effects on Eca109 cells, and could be further explored as a potential anti-esophageal cancer agent.
ABSTRACT
Objective: To demonstrate the effect of dieckol from Eisenia bicyclis on osteoclastogenesis using RAW 264.7 cells. Methods: Murine macrophage RAW 264.7 cells were subjected to dieckol treatment, followed by treatment with receptor activator of nuclear factor kappa-B ligand (RANKL) to induce osteoclastogenesis. Tartrate-resistant acid phosphatase (TRAP) activity was examined using a TRAP activity kit. Western blotting analysis was conducted to examine the level of osteoclast- related factors, including TRAP and calcitonin receptor (CTR), transcriptional factors, including c-Fos, c-Jun, and nuclear factor of activated T cells cytoplasmic 1 (NFATc1), nuclear factor kappa-B (NF-κB), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). Immunofluorescence staining was conducted to examine the expression of c-Fos, c-Jun, and NFATc1. Results: Among the four phlorotannin compounds present in Eisenia bicyclis, dieckol significantly hindered osteoclast differentiation and expression of RANKL-induced TRAP and CTR. In addition, dieckol downregulated the expression levels of c-Fos, c-Jun, NFATc1, ERK, and JNK, and suppressed NF-κB signaling. Conclusions: Dieckol can suppress RANKL-induced osteoclastogenesis. Therefore, it has therapeutic potential in treating osteoclastogenesis- associated diseases.
ABSTRACT
Objective: To investigate the effects of syringic acid on HEK 293 and HepG2 cells in the absence and presence of exogenous Cu (II) and Fe (II) ions. Methods: The antiproliferative effects of syringic acid on HEK 293 and HepG2 cells in the absence and presence of exogenous Cu (II) and Fe (II) ions were examined by MTT assay. Additionally, colony-forming, reactive oxidative species (ROS) generation, apoptosis induction, autophagy, mitochondrial membrane potential, and mitochondrial mass were investigated. Results: At 24 and 72 h, no significant differences were observed in the viability of HepG2 cells between the control and syringic acid + Fe (II) groups. However, exposure of HepG2 cells to syringic acid + Cu (II) for 72 h reduced the cell viability significantly. Furthermore, ROS formation, induction of apoptosis, and autophagic vacuoles were significantly increased in HepG2 cells without marked changes in mitochondrial membrane potential and mitochondrial mass. Moreover, syringic acid + Cu (II) reduced the plating efficiency and surviving fraction significantly. Conclusions: The combination of syringic acid with Cu (II) was toxic to cancer cells and showed pro-oxidant activity. In addition, this combination induced autophagy in cancer cells with less cytotoxic effects on normal cells, which is a potential candidate for the development of novel therapeutics towards cancer.
ABSTRACT
Medicinal plants are rich in nutrients and phytochemicals which prevent and treat a wide range of ailments. Accumulating experimental studies exhibit that some bioactive ingredients extracted from medicinal plants have suitable therapeutic effects on hepatic and renal injuries. This review focuses on the hepato- and reno-protective effects of thymoquinone, crocin, and carvacrol. The relevant literature was retrieved from PubMed, Scopus, Web of Science, and Google Scholar databases from the beginning of 2015 until the end of November 2021. According to the scientific evidence, the considered phytochemicals in this review have been applied with useful therapeutic effects on hepatic and renal damage. These therapeutic effects were mainly mediated through the amelioration of oxidative stress, suppression of inflammatory responses, and inhibition of apoptosis. Intracellular signaling pathways linked to nuclear factor kappa B (NF-κB), adenosine monophosphate-activated protein kinase, c-jun N-terminal kinase, and extracellular signal-regulated kinase 1/2 and Toll-like receptors are the most important pathways targeted by these phytochemicals. Up-regulation of transcription factor Nrf2 and down-regulation of transforming growth factor-beta 1 by these natural compounds also contribute to the alleviation of hepatic and renal injuries.
ABSTRACT
Objective: To explore the possible neuroprotective activities of Humulus japonicus extract against Parkinson's disease (PD) in a cellular model. Methods: PD was modeled in PC12 cells using 6-hydroxydopamine (6-OHDA). The cell activity, intracellular levels of reactive oxygen species (ROS), anti-oxidative and anti-apoptotic effects, and other related indicators and related signaling pathways were evaluated to elucidate the neuroprotective effects of Humulus japonicus extract. Results: Humulus japonicus extract exhibited anti-oxidative and anti-apoptotic effects in 6-OHDA-stimulated PC12 cells. It also reduced oxidative stress-induced ROS accumulation; upregulated antioxidant enzymes, such as glutathione, catalase, heme oxidase-1, and 8-oxguanine glycosylase 1; promoted cell survival by decreasing BAX and increasing Bcl-2 and sirtuin 1 expression via the MAPK and/or Nrf2 signaling pathways. Conclusions: Humulus japonicus extract has antioxidative and anti-apoptotic effects and could be developed as a promising candidate for preventing and treating oxidative stress-related neurodegenerative diseases.
ABSTRACT
Objective: To explore the impact of fucoxanthin on oxidized low-density lipoprotein (OxLDL)-induced stress and inflammation in human endothelial cells and its underlying mechanisms. Methods: HUVECs were treated with OxLDL and/or fucoxanthin for a range of time points and concentrations. We evaluated the effects of fucoxanthin on OxLDL-induced HUVECs using the MTT assay, reactive oxygen species accumulation assay, ELISA, RT-PCR, immunofluorescence, and Western blotting. Results: Fucoxanthin enhanced the cell viability in a dose dependent manner after OxLDL exposure. Furthermore, fucoxanthin pretreatment significantly decreased OxLDL-induced reactive oxygen species production and prevented the activation of the nuclear factor kappa-B pathway, which led to substantial suppression of pro-inflammatory gene expressions. OxLDL-induced upregulation of interleukin-6, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, interleukin-1β, monocyte chemotactic protein-1, cyclooxygenase-1, and tumor necrosis factor-α was significantly reduced by fucoxanthin. Conclusions: Fucoxanthin can inhibit OxLDL-induced vascular inflammation and oxidative stress in HUVECs by targeting Nrf2 signaling pathways.
ABSTRACT
Objective: To assess the antidiarrheal effects of Terfezia claveryi methanolic extract against Escherichia coli, Salmonella typhimurium, Shigella flexneri, and Giardia lamblia. Methods: Antibacterial effects of the Terfezia claveryi methanolic extract were carried out by determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration through micro broth dilution technique. Furthermore, reactive oxygen species production and protein leakage were evaluated. To evaluate the in vitro anti-giardial effects of Terfezia claveryi methanolic extract, Giardia lamblia WB (ATCC® 30957) trophozoites were treated with various concentrations of Terfezia claveryi methanolic extract for 10-360 min. In addition, the plasma membrane permeability of trophozoites treated with Terfezia claveryi methanolic extract was determined. The cytotoxicity effects of Terfezia claveryi methanolic extract against normal (HEK293T) and cancer (MCF-7) cells were also assessed using the MTT assay. Results: The MIC and minimum bactericidal concentration of Terfezia claveryi methanolic extract against bacterial strains were in the range of 0.52-1.04 and 1.04-2.08 mg/mL, respectively. The results revealed that reactive oxygen species production and protein leakage were significantly increased after the bacteria were treated with the Terfezia claveryi methanolic extract, especially at 1/3 and 1/2 MICs (P<0.001). Furthermore, Terfezia claveryi methanolic extract decreased the viability of Giardia lamblia trophozoites in a dose-dependent manner. Terfezia claveryi methanolic extract at 1, 2, and 4 mg/mL resulted in 100% mortality in Giardia lamblia trophozoites after 360, 240, and 120 min, respectively. Moreover, Terfezia claveryi methanolic extract altered the permeability of plasma membrane of Giardia lamblia trophozoites by increasing the concentration. MTT assay revealed that the 50% cytotoxic concentrations values for HEK293T and MCF-7 cells were 4.32 mg/mL and 6.40 mg/mL, respectively, indicating that Terfezia claveryi methanolic extract had greater cytotoxicity against cancer cells than normal cells. Conclusions: Terfezia claveryi methanolic extract had potent in vitro antibacterial and anti-parasitic effects on Escherichia coli, Salmonella typhimurium, Shigella flexneri, and Giardia lamblia by affecting cell membrane permeability and reactive oxygen species generation with no significant cytotoxicity on normal cells.
ABSTRACT
Objective: To explore the possible effects of naringin on acrylamide-induced nephrotoxicity in rats. Methods: Sprague-Dawley rats weighing 200-250 g were randomly divided into five groups. The control group was given intragastric (i.g.) saline (1 mL) for 10 d. The acrylamide group was given i.g. acrylamide in saline (38.27 mg/kg titrated to 1 mL) for 10 d. The treatment groups were administered with naringin in saline (50 and 100 mg/kg, respectively) for 10 d and given i.g. acrylamide (38.27 mg/kg) 1 h after naringin injection. The naringin group was given i.g. naringin (100 mg/kg) alone for 10 d. On day 11, intracardiac blood samples were obtained from the rats when they were under anesthesia, after which they were euthanized. Urea and creatinine concentrations of blood serum samples were analyzed with an autoanalyzer. Enzyme-linked immunosorbent assay was used to quantify malondialdehyde, superoxide dismutase, glutathione, glutathione peroxidase, catalase, tumor necrosis factor-β, nuclear factor-κB, interleukin (IL)-33, IL-6, IL-1β, cyclooxygenase-2, kidney injury molecule-1, mitogen-activated protein kinase-1, and caspase-3 in kidney tissues. Renal tissues were also evaluated by histopathological and immunohistochemical examinations for 8-OHdG and Bcl-2. Results: Naringin attenuated acrylamide-induced nephrotoxicity by significantly decreasing serum urea and creatinine levels. Naringin increased superoxide dismutase, glutathione, glutathione peroxidase, and catalase activities and decreased malondialdehyde levels in kidney tissues. In addition, naringin reduced the levels of inflammatory and apoptotic parameters in kidney tissues. The histopathological assay showed that acrylamide caused histopathological changes and DNA damage, which were ameliorated by naringin. Conclusions: Naringin attenuated inflammation, apoptosis, oxidative stress, and oxidative DNA damage in acrylamide-induced nephrotoxicity in rats.
ABSTRACT
Cardiovascular diseases cause significant morbidity and mortality worldwide, incurring a major public health burden. Gastrodia elata Blume is a traditional Chinese herbal medicine that has been widely used to treat central nervous system and cardiovascular diseases. Gastrodin, as the major active component in Gastrodia elata Blume, can confer protection against cardiovascular diseases. In this review, we summarize the anti-inflammatory actions, anti-cardiac hypertrophy, anti-hypertension, anti-atherosclerosis, and angiogenic effects of gastrodin, as well as its protective effects on vascular cells and against myocardial ischemia-reperfusion injury. The medical potential of gastrodin in diabetes-related cardiovascular diseases is also discussed.
ABSTRACT
Objective: To investigate the effect of Oroxylum indicum fruit extract on high-fat diet-induced hyperlipidemic mice. Methods: The phytochemical composition of Oroxylum indicum fruit extract was determined by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) and gas chromatography-mass spectrometry. Forty-two male mice were used. The mice were divided into six groups: normal control, high-fat diet control, simvastatin treatment (20 mg/kg BW/day), and Oroxylum indicum fruit extract (100, 200, 300 mg/kg BW/day) treatment groups. Food intake, body weight, serum parameters, lipid profile, and histopathological lesions of the kidney, liver, and epididymal fat were observed. Results: LC-MS/MS results revealed four major components of Oroxylum indicum fruit extract: luteolin, apigenin, baicalein, and oroxylin A. Twenty-seven volatile oils were identified from Oroxylum indicum fruit extract. Daily oral administration of Oroxylum indicum fruit extract at 100 to 300 mg/kg BW/day significantly reduced the body weight, total cholesterol, triglyceride, and low-density lipoprotein cholesterol level (P<0.05), whereas high-density lipoprotein cholesterol was higher than the high-fat diet control group. Treatment with 300 mg/kg BW/day Oroxylum indicum fruit extract reduced the pathological lesion and prevented fat accumulation in the kidney and liver. Conclusions: Oroxylum indicum fruit extract has hypolipidemic effect in hyperlipidemic mice, and the active ingredients of Oroxylum indicum fruit extract, both flavonoids and volatile oils, should be further explored as an antihyperlipidemic agent.
ABSTRACT
Objective: To evaluate the antinociceptive activity of perillyl acetate in mice and in silico simulations. Methods: The vehicle, perillyl acetate (100, 150 and/or 200 mg/kg, i.p.), diazepam (2 mg/kg, i.p.) or morphine (6 mg/kg, i.p.) was administered to mice, respectively. Rotarod test, acetic acid-induced abdominal writhing, formalin-induced nociception, hot plate test, and tail-flick test were performed. Opioid receptors-involvement in perillyl acetate antinociceptive effect was also investigated. Results: Perillyl acetate did not affect the motor coordination of mice. However, it reduced the number of acetic acid-induced abdominal twitches and licking times in the formalin test. There was an increase of latency time in the tail-flick test of 30 and 60 minutes. Pretreatment with naloxone reversed the antinociceptive effect of perillyl acetate (200 mg/kg). In silico analysis demonstrated that perillyl acetate could bind to μ-opioid receptors. Conclusions: Perillyl acetate has antinociceptive effect at the spinal level in animal nociception models, without affecting the locomotor integrity and possibly through μ-opioid receptors. In silico studies have suggested that perillyl acetate can act as a μ-opioid receptor agonist.