Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Acta Pharmaceutica Sinica B ; (6): 2344-2361, 2021.
Article in English | WPRIM | ID: wpr-888806

ABSTRACT

Recent infectious disease outbreaks, such as COVID-19 and Ebola, have highlighted the need for rapid and accurate diagnosis to initiate treatment and curb transmission. Successful diagnostic strategies critically depend on the efficiency of biological sampling and timely analysis. However, current diagnostic techniques are invasive/intrusive and present a severe bottleneck by requiring specialist equipment and trained personnel. Moreover, centralised test facilities are poorly accessible and the requirement to travel may increase disease transmission. Self-administrable, point-of-care (PoC) microneedle diagnostic devices could provide a viable solution to these problems. These miniature needle arrays can detect biomarkers in/from the skin in a minimally invasive manner to provide (near-) real-time diagnosis. Few microneedle devices have been developed specifically for infectious disease diagnosis, though similar technologies are well established in other fields and generally adaptable for infectious disease diagnosis. These include microneedles for biofluid extraction, microneedle sensors and analyte-capturing microneedles, or combinations thereof. Analyte sampling/detection from both blood and dermal interstitial fluid is possible. These technologies are in their early stages of development for infectious disease diagnostics, and there is a vast scope for further development. In this review, we discuss the utility and future outlook of these microneedle technologies in infectious disease diagnosis.

2.
Acta Pharmaceutica Sinica B ; (6): 3244-3261, 2021.
Article in English | WPRIM | ID: wpr-922791

ABSTRACT

Major challenges for cancer treatment are how to effectively eliminate primary tumor and sufficiently induce immunogenic cell death (ICD) to provoke a robust immune response for metastasis control. Here, a self-assembled cascade bioreactor was developed to improve cancer treatment with enhanced tumor penetration and synergistic therapy of starvation, chemodynamic (CDT) and photothermal therapy. Ultrasmall FeS-GOx nanodots were synthesized with glucose oxidase (GOx) as template and induced by paclitaxel (PTX) to form self-assembling FeS-GOx@PTX (FGP)

3.
Acta Pharmaceutica Sinica B ; (6): 979-986, 2020.
Article in English | WPRIM | ID: wpr-828830

ABSTRACT

With the development of biotherapy, biomacromolecular drugs have gained tremendous attention recently, especially in drug development field due to the sophisticated functions . Over the past few years, a motley variety of drug delivery strategies have been developed for biomacromolecular drugs to overcome the difficulties in the druggability, ., the instability and easily restricted by physiologic barriers. The application of novel delivery systems to deliver biomacromolecular drugs can usually prolong the half-life, increase the bioavailability, or improve patient compliance, which greatly improves the efficacy and potentiality for clinical use of biomacromolecular drugs. In this review, recent studies regarding the drug delivery strategies for macromolecular drugs in cancer therapy are summarized, mainly drawing on the development over the last five years.

SELECTION OF CITATIONS
SEARCH DETAIL