ABSTRACT
Objective:To observe and verify the changes of transcriptome in hyperoxia-induced acute lung injury (HALI), and to further clarify the changes of pathways in HALI.Methods:Twelve healthy male C57BL/6J mice were randomly divided into normoxia group and HALI group according to the random number table, with 6 mice in each group. The mice in the normoxia group were fed normally in the room, and the mice in the HALI group was exposed to 95% oxygen to reproduce the HALI animal model. After 72 hours of hyperoxia exposure, the lung tissues were taken for transcriptome sequencing, and then Kyoto Encyclopedia of Genes and Genomes database (KEGG) pathway enrichment analysis was performed. The pathological changes of lung tissue were observed under light microscope after hematoxylin-eosin (HE) staining. Real-time fluorescence quantitative reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting were used to verify the key molecules in the signal pathways closely related to HALI identified by transcriptomics analysis.Results:Transcriptomic analysis showed that hyperoxia induced 537 differentially expressed genes in lung tissue of mice as compared with the normoxia group including 239 up-regulated genes and 298 down-regulated genes. Further KEGG pathway enrichment analysis identified 20 most significantly enriched pathway entries, and the top three pathways were ferroptosis signaling pathway, p53 signaling pathway and glutathione (GSH) metabolism signaling pathway. The related genes in the ferroptosis signaling pathway included the up-regulated gene heme oxygenase-1 (HO-1) and the down-regulated gene solute carrier family 7 member 11 (SLC7A11). The related genes in the p53 signaling pathway included the up-regulated gene tumor suppressor gene p53 and the down-regulated gene murine double minute 2 (MDM2). The related gene in the GSH metabolic signaling pathway was up-regulated gene glutaredoxin 1 (Grx1). The light microscope showed that the pulmonary alveolar structure of the normoxia group was normal. In the HALI group, the pulmonary alveolar septum widened and thickened, and the alveolar cavity shrank or disappeared. RT-RCR and Western blotting confirmed that compared with the normoxia group, the mRNA and protein expressions of HO-1 and p53 in lung tissue of the HALI group were significantly increased [HO-1 mRNA (2 -ΔΔCt): 2.16±0.17 vs. 1.00±0.00, HO-1 protein (HO-1/β-actin): 1.05±0.01 vs. 0.79±0.01, p53 mRNA (2 -ΔΔCt): 2.52±0.13 vs. 1.00±0.00, p53 protein (p53/β-actin): 1.12±0.02 vs. 0.58±0.03, all P < 0.05], and the mRNA and protein expressions of Grx1, MDM2, SLC7A11 were significantly decreased [Grx1 mRNA (2 -ΔΔCt): 0.53±0.05 vs. 1.00±0.00, Grx1 protein (Grx1/β-actin): 0.54±0.03 vs. 0.93±0.01, MDM2 mRNA (2 -ΔΔCt): 0.48±0.03 vs. 1.00±0.00, MDM2 protein (MDM2/β-actin): 0.57±0.02 vs. 1.05±0.01, SLC7A11 mRNA (2 -ΔΔCt): 0.50±0.06 vs. 1.00±0.00, SLC7A11 protein (SLC7A11/β-actin): 0.72±0.03 vs. 0.98±0.01, all P < 0.05]. Conclusions:HALI is closely related to ferroptosis, p53 and GSH metabolism signaling pathways. Targeting the key targets in ferroptosis, p53 and GSH metabolism signaling pathways may be an important strategy for the prevention and treatment of HALI.
ABSTRACT
OBJECTIVE@#To explore the role of Runt-related transcription factor 3 (RUNX3) in metabolic regulation of trastuzumab-resistant gastric cancer cells and investigate the mechanism of RUNX3 knockdown-mediated reversal of trastuzumab resistance.@*METHODS@#We performed a metabolomic analysis of trastuzumab-resistant gastric cancer cells (NCI N87R) and RUNX3 knockdown cells (NCI N87R/RUNX3) using ultra performance liquid chromatography (UPLC) coupled with Q Exactive Focus Orbitrap mass spectrometry (MS). Multivariate combined with univariate analyses and MS/MS ion spectrums were used to screen the differential variables. MetaboAnalyst 5.0 database was employed for pathway enrichment analysis. Differential metabolites-genes regulatory relationships were constructed based on OmicsNet database. The changes in GSH/GSSG and NADPH/NADP ratios in NCI N87R/RUNX3 cells were measured using detection kits.@*RESULTS@#The metabolic profile of NCI N87R cells was significantly altered after RUNX3 knockdown, with 81 differential metabolites identified to contribute significantly to the classification, among which 43 metabolites were increased and 38 were decreased (P < 0.01). In NCI N87R cells, RUNX3 knockdown resulted in noticeable alterations in 8 pathways involving glutamine metabolism, glycolysis, glycerophospholipid, nicotinate-nicotinamide and glutathione metabolism, causing also significant reduction of intracellular GSH/GSSG and NADPH/NADP ratios (P < 0.01). The differential metabolites-genes network revealed a regulatory relationship between the metabolic molecules and genes.@*CONCLUSION@#RUNX3 reverses trastuzumab resistance in gastric cancer cells by regulating energy metabolism and oxidation-reduction homeostasis and may serve as a potential therapeutic target for trastuzumab-resistant gastric cancer.
Subject(s)
Humans , Chromatography, High Pressure Liquid , Core Binding Factor Alpha 3 Subunit/genetics , Glutathione Disulfide , Metabolomics , NADP , Stomach Neoplasms/genetics , Tandem Mass Spectrometry , Trastuzumab/pharmacologyABSTRACT
Two experiments were performed to clarify the effects of balneotherapy on platelet glutathione metabolism. One experiment, in which healthy men were subjected to water immersion at temperatures of 25°C, 36°C, and 42°C for 10min, showed that the level of platelet lipid peroxides (LPO) tended to increase at 25°C and 42°C, suggesting the presence of oxidative stress at these temperatures. When an antioxidative defense system was induced at these temperatures, the levels of platelet glutathione (GSH), glutathione peroxidase (GPX) and glutathione reductase (GR) activities increased. The other experiment, in which 4 weeks of balneotherapy was applied to type II (non-insulin-dependent) diabetic patients, showed that the level of GSH on admission correlated well with that of fasting plasma glucose (FPG, r=0.692, p<0.050). After 4 weeks of balneotherpy, the level of GSH increased (p<0.01) in well-controlled patients (FPG<150mg/dl) and decreased (p<0.05) in poorly controlled patients (FPG≥150mg/dl), There was a negative correlation between GPX activities and the level of FPG (r=-0.430, p<0.05). After the balneotherapy, the activity increased in five patients, decreased in three patients, and showed no changes in four patients.<br>These results indicate that, in diabetic patients, 1) platelet GSH synthesis is obviously induced in response to oxidative stress, 2) lowered GPX activities suggest an impaired antioxidative defense system, and 3) platelet glutathione metabolism was partly improved by 4 weeks of balneotherapy but depended on the control status of plasma glucose levels. From these findings, we conclude that 1) patients whose platelet antioxidative defense system is damaged such as those with diabetes mellitus should not take hot or cold bath, and that 2) balneotherapy improves platelet glutathione metabolism, leading to normalization of platelet aggregability.