Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add filters








Year range
1.
Acta Pharmaceutica Sinica B ; (6): 1914-1930, 2021.
Article in English | WPRIM | ID: wpr-888842

ABSTRACT

Overactive bladder (OAB) is the most bothersome symptom in lower urinary tract symptoms (LUTS). Current pharmacologic treatment aims to inhibit detrusor contraction; however, shows unsatisfied efficacy and high discontinuation rate. LIM kinases (LIMKs) promote smooth muscle contraction in the prostate; however, their function in the bladder smooth muscle remains unclear. Here, we studied effects of the LIMK inhibitors on bladder smooth muscle contraction and proliferation both

2.
Acta Pharmaceutica Sinica B ; (6): 2344-2361, 2021.
Article in English | WPRIM | ID: wpr-888806

ABSTRACT

Recent infectious disease outbreaks, such as COVID-19 and Ebola, have highlighted the need for rapid and accurate diagnosis to initiate treatment and curb transmission. Successful diagnostic strategies critically depend on the efficiency of biological sampling and timely analysis. However, current diagnostic techniques are invasive/intrusive and present a severe bottleneck by requiring specialist equipment and trained personnel. Moreover, centralised test facilities are poorly accessible and the requirement to travel may increase disease transmission. Self-administrable, point-of-care (PoC) microneedle diagnostic devices could provide a viable solution to these problems. These miniature needle arrays can detect biomarkers in/from the skin in a minimally invasive manner to provide (near-) real-time diagnosis. Few microneedle devices have been developed specifically for infectious disease diagnosis, though similar technologies are well established in other fields and generally adaptable for infectious disease diagnosis. These include microneedles for biofluid extraction, microneedle sensors and analyte-capturing microneedles, or combinations thereof. Analyte sampling/detection from both blood and dermal interstitial fluid is possible. These technologies are in their early stages of development for infectious disease diagnostics, and there is a vast scope for further development. In this review, we discuss the utility and future outlook of these microneedle technologies in infectious disease diagnosis.

3.
Acta Pharmaceutica Sinica B ; (6): 763-780, 2021.
Article in English | WPRIM | ID: wpr-881168

ABSTRACT

Intestinal toxicity induced by chemotherapeutics has become an important reason for the interruption of therapy and withdrawal of approved agents. In this study, we demonstrated that chemotherapeutics-induced intestinal damage were commonly characterized by the sharp upregulation of tryptophan (Trp)-kynurenine (KYN)-kynurenic acid (KA) axis metabolism. Mechanistically, chemotherapy-induced intestinal damage triggered the formation of an interleukin-6 (IL-6)-indoleamine 2,3-dioxygenase 1 (IDO1)-aryl hydrocarbon receptor (AHR) positive feedback loop, which accelerated kynurenine pathway metabolism in gut. Besides, AHR and G protein-coupled receptor 35 (GPR35) negative feedback regulates intestinal damage and inflammation to maintain intestinal integrity and homeostasis through gradually sensing kynurenic acid level in gut and macrophage, respectively. Moreover, based on virtual screening and biological verification, vardenafil and linagliptin as GPR35 and AHR agonists respectively were discovered from 2388 approved drugs. Importantly, the results that vardenafil and linagliptin significantly alleviated chemotherapy-induced intestinal toxicity

4.
Acta Pharmaceutica Sinica B ; (6): 850-860, 2020.
Article in English | WPRIM | ID: wpr-828839

ABSTRACT

Organic anion transporting polypeptide 1B1 and 1B3 (OATP1B1/3) as important uptake transporters play a fundamental role in the transportation of exogenous drugs and endogenous substances into cells. Rat OATP1B2, encoded by the gene, is homologous to human OATP1B1/3. Although OATP1B1/3 is very important, few animal models can be used to study its properties. In this report, we successfully constructed the S knockout (KO) rat model using the CRISPR/Cas9 technology for the first time. The novel rat model showed the absence of OATP1B2 protein expression, with no off-target effects as well as compensatory regulation of other transporters. Further pharmacokinetic study of pitavastatin, a typical substrate of OATP1B2, confirmed the OATP1B2 function was absent. Since bilirubin and bile acids are the substrates of OATP1B2, the contents of total bilirubin, direct bilirubin, indirect bilirubin, and total bile acids in serum are significantly higher in KO rats than the data of wild-type rats. These results are consistent with the symptoms caused by the absence of OATP1B1/3 in Rotor syndrome. Therefore, this rat model is not only a powerful tool for the study of OATP1B2-mediated drug transportation, but also a good disease model to study hyperbilirubinemia-related diseases.

5.
Acta Pharmaceutica Sinica B ; (6): 1397-1413, 2020.
Article in English | WPRIM | ID: wpr-828800

ABSTRACT

Pyroptosis is a form of programmed cell death, and recently described as a new molecular mechanism of chemotherapy drugs in the treatment of tumors. Miltirone, a derivative of phenanthrene-quinone isolated from the root of Bunge, has been shown to possess anti-cancer activities. Here, we found that miltirone inhibited the cell viability of either HepG2 or Hepa1-6 cells, and induced the proteolytic cleavage of gasdermin E (GSDME) in each hepatocellular carcinoma (HCC) cell line, with concomitant cleavage of caspase 3. Knocking out switched miltirone-induced cell death from pyroptosis to apoptosis. Additionally, the induction effects of miltirone on GSDME-dependent pyroptosis were attenuated by siRNA-mediated caspase three silencing and the specific caspase three inhibitor Z-DEVD-FMK, respectively. Miltirone effectively elicited intracellular accumulation of reactive oxygen species (ROS), and suppressed phosphorylation of mitogen-activated and extracellular signal-regulated kinase (MEK) and extracellular regulated protein kinases 1/2 (ERK1/2) for pyroptosis induction. Moreover, miltirone significantly inhibited tumor growth and induced pyroptosis in the Hepa1-6 mouse HCC syngeneic model. These results provide a new insight that miltirone is a potential therapeutic agent for the treatment of HCC GSDME-dependent pyroptosis.

6.
Acta Pharmaceutica Sinica B ; (6): 279-293, 2019.
Article in English | WPRIM | ID: wpr-774986

ABSTRACT

Over recent decades, many studies have reported that hypocrellin A (HA) can eliminate cancer cells with proper irradiation in several cancer cell lines. However, the precise molecular mechanism underlying its anticancer effect has not been fully defined. HA-mediated cytotoxicity and apoptosis in human lung adenocarcinoma A549 cells were evaluated after photodynamic therapy (PDT). A temporal quantitative proteomics approach by isobaric tag for relative and absolute quantitation (iTRAQ) 2D liquid chromatography with tandem mass spectrometric (LC-MS/MS) was introduced to help clarify molecular cytotoxic mechanisms and identify candidate targets of HA-induced apoptotic cell death. Specific caspase inhibitors were used to further elucidate the molecular pathway underlying apoptosis in PDT-treated A549 cells. Finally, down-stream apoptosis-related protein was evaluated. Apoptosis induced by HA was associated with cell shrinkage, externalization of cell membrane phosphatidylserine, DNA fragmentation, and mitochondrial disruption, which were preceded by increased intracellular reactive oxygen species (ROS) generations. Further studies showed that PDT treatment with 0.08 µmol/L HA resulted in mitochondrial disruption, pronounced release of cytochrome , and activation of caspase-3, -9, and -7. Together, HA may be a possible therapeutic agent directed toward mitochondria and a promising photodynamic anticancer candidate for further evaluation.

7.
Acta Pharmaceutica Sinica B ; (6): 80-90, 2017.
Article in English | WPRIM | ID: wpr-256776

ABSTRACT

Non-small cell lung cancer (NSCLC) accounts for about 85% of all lung cancers. Traditional chemotherapy for this disease leads to serious side effects. Here we prepared an inhalable oridonin-loaded poly(lactic--glycolic)acid (PLGA) large porous microparticle (LPMP) fortreatment of NSCLC with the emulsion/solvent evaporation/freeze-drying method. The LPMPs were smooth spheres with many internal pores. Despite a geometric diameter of ~10 µm, the aerodynamic diameter of the spheres was only 2.72 µm, leading to highly efficient lung deposition.studies showed that most of oridonin was released after 1 h, whereas the alveolar macrophage uptake of LPMPs occurred after 8 h, so that most of oridonin would enter the surroundings without undergoing phagocytosis. Rat primary NSCLC models were built and administered with saline, oridonin powder, gemcitabine, and oridonin-loaded LPMPsairway, respectively. The LPMPs showed strong anticancer effects. Oridonin showed strong angiogenesis inhibition and apoptosis. Relevant mechanisms are thought to include oridonin-induced mitochondrial dysfunction accompanied by low mitochondrial membrane potentials, downregulation of BCL-2 expressions, upregulation of expressions of BAX, caspase-3 and caspase-9. The oridonin-loaded PLGA LPMPs showed high anti-NSCLC effects after pulmonary delivery. In conclusion, LPMPs are promising dry powder inhalations fortreatment of lung cancer.

8.
Acta Pharmaceutica Sinica B ; (6): 205-211, 2016.
Article in English | WPRIM | ID: wpr-309966

ABSTRACT

Acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is a severe, life-threatening medical condition characterized by widespread inflammation in the lungs, and is a significant source of morbidity and mortality in the patient population. New therapies for the treatment of ALI are desperately needed. In the present study, we examined the effect of andrographolide sulfonate, a water-soluble form of andrographolide (trade name: Xi-Yan-Ping Injection), on lipopolysaccharide (LPS)-induced ALI and inflammation. Andrographolide sulfonate was administered by intraperitoneal injection to mice with LPS-induced ALI. LPS-induced airway inflammatory cell recruitment and lung histological alterations were significantly ameliorated by andrographolide sulfonate. Protein levels of pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF) and serum were reduced by andrographolide sulfonate administration. mRNA levels of pro-inflammatory cytokines in lung tissue were also suppressed. Moreover, andrographolide sulfonate markedly suppressed the activation of mitogen-activated protein kinase (MAPK) as well as p65 subunit of nuclear factor-κB (NF-κB). In summary, these results suggest that andrographolide sulfonate ameliorated LPS-induced ALI in mice by inhibiting NF-κB and MAPK-mediated inflammatory responses. Our study shows that water-soluble andrographolide sulfonate may represent a new therapeutic approach for treating inflammatory lung disorders.

9.
Acta Pharmaceutica Sinica B ; (6): 475-491, 2016.
Article in English | WPRIM | ID: wpr-256804

ABSTRACT

Intestine is responsible for the biotransformation of many orally-exposed chemicals. The constitutive androstane receptor (CAR/Nr1i3) is known to up-regulate many genes encoding drug-metabolizing enzymes and transporters (drug-processing genes/DPGs) in liver, but less is known regarding its effect in intestine. Sixty-day-old wild-type andmice were administered the CAR-ligand TCPOBOP or vehicle once daily for 4 days. In wild-type mice,mRNA was down-regulated by TCPOBOP in liver and duodenum.mice had altered basal intestinal expression of many DPGs in a section-specific manner. Consistent with the liver data (Aleksunes and Klaassen, 2012), TCPOBOP up-regulated many DPGs (, and) in specific sections of small intestine in a CAR-dependent manner. However, the mRNAs ofandwere previously known to be up-regulated by TCPOBOP in liver but were not altered in intestine. Interestingly, many known CAR-target genes were highest expressed in colon where CAR is minimally expressed, suggesting that additional regulators are involved in regulating their expression. In conclusion, CAR regulates the basal expression of many DPGs in intestine, and although many hepatic CAR-targeted DPGs wereCAR-targets in intestine, pharmacological activation of CAR in liver and intestine are not identical.

10.
Acta Pharmaceutica Sinica B ; (6): 554-563, 2015.
Article in English | WPRIM | ID: wpr-309996

ABSTRACT

The effects of tanshinone IIA on the proliferation of the human non-small cell lung cancer cell line A549 and its possible mechanism on the VEGF/VEGFR signal pathway were investigated. The exploration of the interaction between tanshinone IIA and its target proteins provides a feasible platform for studying the anticancer mechanism of active components of herbs. The CCK-8 assay was used to evaluate the proliferative activity of A549 cells treated with tanshinone IIA (2.5-80 μmol/L) for 24, 48 and 72 h, respectively. Flow cytometry was used for the detection of cell apoptosis and cell cycle perturbation. VEGF and VEGFR2 expression were studied by Western blotting. The binding mode of tanshinone IIA within the crystal structure of the VEGFR2 protein was evaluated with molecular docking analysis by use of the CDOCKER algorithm in Discovery Studio 2.1. The CCK-8 results showed that tanshinone IIA can significantly inhibit A549 cell proliferation in a dose- and time-dependent manner. Flow cytometry results showed that the apoptosis rate of tested group was higher than the vehicle control, and tanshinone IIA-treated cells accumulated at the S phase, which was higher than the vehicle control. Furthermore, the expression of VEGF and VEGFR2 was decreased in Western blot. Finally, molecular docking analysis revealed that tanshinone IIA could be stably docked into the kinase domain of VEGFR2 protein with its unique modes to form H-bonds with Cys917 and π-π stacking interactions with Val848. In conclusion, tanshinone IIA may suppress A549 proliferation, induce apoptosis and cell cycle arrest at the S phase. This drug may suppress angiogenesis by targeting the protein kinase domains of VEGF/VEGFR2.

SELECTION OF CITATIONS
SEARCH DETAIL