ABSTRACT
Objective:To prepare PLGA electrospinning membranes doped with hollow mesoporous silica nanoparticles loaded with metformin and investigate their biological properties.Methods:PLGA(Control group)and PLGA/HMSN/Met electrospun membranes(Experimental group)were prepared by electrospinning technology.The microscopic morphology of the 2 groups of electrospun mem-branes was observed by SEM.The hydrophilicity,elemental composition and in vitro drug release were detected by contact angle meas-urement,EDS,and drug release test,respectively.SEM and laser scanning confocal microscope(LSCM)were used to observe the growth of periodontal ligament stem cells(PDLSCs)on the 2 groups of electrospun membranes,and CCK-8 assay was used to detect the cell proliferation.Results:Both electrospun membranes had extracellular matrix(ECM)-like fiber structures.The PLGA/HMSN/Met electrospun membranes could slowly release Met for up to 35 days,and the hydrophilicity of PLGA membranes was improved by HMSN-Met doped.The composite electrospun membranes had good cell biocompatibility in vitro,and could promote cell proliferation.Conclu-sion:Modification of PLGA with HMSN-Met can improve the hydrophilicity of PLGA electrospun membranes,continuously release Met,and have good cell biocompatibility.
ABSTRACT
Objective@#To deposit degradable amino-hybrid mesoporous silica (AHMS) in situ on the surface of titanium nanotube (TNT) and explore its protective effect on nanomorphology and osteogenesis.@*Methods@#TNT and TNT@AHMS were sequentially prepared via an anodizing method: the oil-water two-phase method (experimental group) and the acid-etched titanium method [control group (Ti)]. The parameters for synthesis were explored by changing the silicon source dosage ratio (3∶1, 1∶1, 1∶3); the surface morphology was observed by scanning electron microscope(SEM), hydrophilicity was detected by Water Contact Angle Tester, elemental composition was detected by X-ray photoelectron spectroscopy (XPS); nanoindentation test and ultrasonic oscillator were used to observe the morphological holding effect as mechanical strength of TNT@AHMS in vitro; simulated immersion experiments in vitro was used to observe the degradation behavior of the material. the MC3T3-E1 cell line was used to observe the effect of cell adhesion, proliferation and differentiation on the material; and an SD rat femoral implant model and micro-CT were used to verify the protective effect and osseointegration effect of AHMS on TNT morphology.@*Results@#The morphologies of TNT and TNT@AHMS were successfully prepared, and the silicon source ratio was 1:3. SEM showed that the titanium nanotubes were uniformly covered with AHMS coating, and the mesoporous pore size was about 4 nm. After AHMS was incorporated, the surface of the material was hydrophilic (12.78°), the presence of amino groups (NH2-) was detected, the material was completely degraded within 12 h in vitro, and the active morphology of the TNT was re-exposed with a cumulative silicon release of 10 ppm. Nanoindentation test showed that TNT@AHMS exhibited more ideal surface mechanical strength. SEM revealed that TNT maintains its own morphology under the protection of AHMS, and the TNT group suffered severe exfoliation. In addition, the early adhesion and proliferation rates, ALP activity, and bone volume fraction of cells on the TNT@AHMS surface 4 weeks after implantation were significantly higher than those in the TNT group.@*Conclusion@#By depositing AHMS on the surface of TNT, the nanotopography can be protected. It not only prevents the active base topography from exerting subsequent biological effects but also further endows the material with the ability to promote bone regeneration, laying a foundation for the future development of nanotopography-modified titanium implants.
ABSTRACT
Sirolimus self-microemulsion-mesoporous silicon sustained release tablets were prepared in order to improve the dissolution of the insoluble drug sirolimus and reduce its side effects. Firstly, sirolimus self-microemulsion was prepared and cured with mesoporous silicon. Secondly, the suitable excipients were selected according to the appearance, hardness and in vitro release rate. The sustained-release tablets with hydroxypropyl methylcellulose (HPMC) as skeleton material were prepared by powder direct pressing method, and the formulation was optimized by central composite design-response surface method to investigate the drug release in vitro. Finally, the pharmacokinetics was carried out in beagle dogs using the commercial sirolimus tablets as references. The final formulation of sustained-release tablets is as follows: 162 mg of sirolimus self-microemulsion-mesoporous silica (1∶1, w/w), 80 mg of HPMC K4M and 80 mg of carboxymethyl starch sodium, the microcrystalline cellulose is 168 mg. The results of in vitro release test showed that the self-made sustained-release tablets released slowly within 12 h, which conformed to the Ritger-Peppas model. The in vivo test results showed that compared with the commercial sirolimus tablets, the Cmax of the sustained-release tablets decreased by 49.47%, the Tmax of the sustained-release tablets was prolonged by 5.1 times, and the relative bioavailability was 105.81%. Sirolimus self-microemulsion-mesoporous silicon sustained-release tablets have good sustained-release effects in vitro and in vivo, which provides a reference for the solubilization of other insoluble drugs and the research and development of sustained-release preparations. Animal experiments and welfare processes were reviewed and approved by the Animal Ethics Committee of the 900TH Hospital of the Joint Logistics support Force.
ABSTRACT
This study aimed to investigate the effects of nanoparticles PLGA-NPs and mesoporous silicon nanoparticles(MSNs) of different stiffness before and after combination with menthol or curcumol on the mechanical properties of bEnd.3 cells. The particle size distributions of PLGA-NPs and MSNs were measured by Malvern particle size analyzer, and the stiffness of the two nanoparticles was quantified by atomic force microscopy(AFM). The bEnd.3 cells were cultured in vitro, and the cell surface morphology, roughness, and Young's modulus were examined to characterize the roughness and stiffness of the cell surface. The changes in the mechanical properties of the cells were observed by AFM, and the structure and expression of cytoskeletal F-actin were observed by a laser-scanning confocal microscope. The results showed that both nanoparticles had good dispersion. The particle size of PLGA-NPs was(98.77±2.04) nm, the PDI was(0.140±0.030), and Young's modulus value was(104.717±8.475) MPa. The particle size of MSNs was(97.47±3.92) nm, the PDI was(0.380±0.016), and Young's modulus value was(306.019±8.822) MPa. The stiffness of PLGA-NPs was significantly lower than that of MSNs. After bEnd.3 cells were treated by PLGA-NPs and MSNs separately, the cells showed fine pores on the cell surface, increased roughness, decreased Young's modulus, blurred and broken F-actin bands, and reduced mean gray value. Compared with PLGA-NPs alone, PLGA-NPs combined with menthol or curcumol could allow deepened and densely distributed surface pores of bEnd.3 cells, increase roughness, reduce Young's modulus, aggravate F-actin band breakage, and diminish mean gray value. Compared with MSNs alone, MSNs combined with menthol could allow deepened and densely distributed surface pores of bEnd.3 cells, increase roughness, reduce Young's modulus, aggravate F-actin band breakage, and diminish mean gray value, while no significant difference was observed in combination with curcumol. Therefore, it is inferred that the aromatic components can increase the intracellular uptake and transport of nanoparticles by altering the biomechanical properties of bEnd.3 cells.
Subject(s)
Animals , Mice , Menthol/pharmacology , Actins/metabolism , Endothelial Cells/metabolism , Nanoparticles/chemistryABSTRACT
To investigate the crucial role of particle size in the biological effects of nanoparticles, a series of mesoporous silica nanoparticles (MSNs) were prepared with particle size gradients (50, 100, 150, 200 nm) with the traditional Stober method and adjusting the type and ratio of the silica source. The correlation between toxicity and size-caused biological effects were then further examined both in vitro and in vivo. The results indicated that the prepared MSNs had a uniform size, good dispersal, and ordered mesoporous structure. Hemolytic toxicity was found to be independent of particle size. At the cellular level, MSNs with smaller particle sizes were more readily internalized by cells, which initiated to more intense oxidative stress, therefor inducing higher cytotoxicity, and apoptosis rate. In vivo studies demonstrated that MSNs primarily accumulated in the liver and kidneys of mice. Pharmacokinetic analysis revealed that larger MSNs were eliminated more efficiently by the urinary system than smaller MSNs. The mice's body weight monitoring, blood tests, and pathological sections of major organs indicated good biocompatibility for MSNs of different sizes. Animal welfare and the animal experimental protocols were strictly consistent with related ethics regulations of Zhejiang Chinese Medical University. Overall, this study prepared MSNs with a particle size gradient to investigate the correlation between toxicity and particle size using macrophages and endothelial cells. The study also examined the biosafety of MSNs with different particle sizes in vivo and in vitro, which could help to improve the safety design strategy of MSNs for drug delivery systems.
ABSTRACT
Malignant tumors are major diseases that endanger human health. Due to their complex and variable microenvironment, most anti-tumor drugs cannot precisely reach the focal tissue and be released in a controlled manner. Intelligent responsive nano carriers have become a hot spot in the field of anti-tumor drug delivery systems. As an excellent nano material, mesoporous silica has the advantages of non-toxic, stable, adjustable pore volume and pore diameter, and easy functional modification on the surface. By virtue of its perceptive response to the tumor microenvironment or physiological changes, it can achieve the targeted drug release or controlled drug release of the drug delivery system in the tissue, making it an ideal carrier for intelligent response drug delivery system. In this paper, we review the design strategies and current research status of smart responsive anti-tumor drug delivery systems based on mesoporous silica, in order to provide a reference for the development of anti-tumor drug nanoformulations.
ABSTRACT
OBJECTIVE@#To develop a drug-loaded composite microsphere that can simultaneously release the berberine (BBR) and naringin (NG) to repair infectious bone defects.@*METHODS@#The NG was loaded on mesoporous microspheres (MBG) to obtain the drug-loaded microspheres (NG-MBG). Then the dual drug-loaded compound microspheres (NG-MBG@PDA-BBR) were obtained by wrapping NG-MBG with polydopamine (PDA) and modifying the coated PDA with BBR. The composite microspheres were characterized by scanning electron microscopy, X-ray diffraction, specific surface area and pore volume analyzer, and Fourier transform infrared spectroscopy; the drug loading rate and release of NG and BBR were measured; the colony number was counted and the bacterial inhibition rate was calculated after co-culture with Staphylococcus aureus and Escherichia coli for 12 hours to observe the antibacterial effect; the biocompatibility was evaluated by live/dead cell fluorescence staining and cell counting kit 8 assay after co-culture with rat's BMSCs for 24 and 72 hours, respectively, and the osteogenic property was evaluated by alkaline phosphatase (ALP) staining and alizarin red staining after 7 and 14 days, respectively.@*RESULTS@#NG-MBG@PDA-BBR and three control microspheres (MBG, MBG@PDA, and NG-MBG@PDA) were successfully constructed. Scanning electron microscopy showed that NG-MBG@PDA-BBR had a rough lamellar structure, while MBG had a smooth surface, and MBG@PDA and NG-MBG@PDA had a wrapped agglomeration structure. Specific surface area analysis showed that MBG had a mesoporous structure and had drug-loading potential. Low angle X-ray diffraction showed that NG was successfully loaded on MBG. The X-ray diffraction pattern contrast showed that all groups of microspheres were amorphous. Fourier transform infrared spectroscopy showed that NG and BBR peaks existed in NG-MBG@PDA-BBR. NG-MBG@PDA-BBR had good sustained drug release ability, and NG and BBR had early burst release and late sustained release. NG-MBG@PDA-BBR could inhibit the growth of Staphylococcus aureus and Escherichia coli, and the antibacterial ability was significantly higher than that of MBG, MBG@PDA, and NG-MBG@PDA ( P<0.05). But there was a significant difference in biocompatibility at 72 hours among microspheres ( P<0.05). ALP and alizarin red staining showed that the ALP positive area and the number of calcium nodules in NG-MBG@PDA-BBR were significantly higher than those of MBG and NG-MBG ( P<0.05), and there was no significant difference between NG-MBG@PDA and NG-MBG@PDA ( P>0.05).@*CONCLUSION@#NG-MBG@PDA-BBR have sustained release effects on NG and BBR, indicating that it has ideal dual performance of osteogenesis and antibacterial property.
Subject(s)
Rats , Animals , Osteogenesis , Delayed-Action Preparations/pharmacology , Microspheres , Berberine/pharmacology , Anti-Bacterial Agents/pharmacology , Escherichia coliABSTRACT
Chemoimmunotherapy has attracted much attention as an emerging therapy pattern for the treatment of cancers. Exploring effective drug combination schemes and reasonable delivery methods remained the key issue in current research. Herein, we designed sorafenib (SF) and anti-Tim-3 monoclonal antibody (Tim-3 mAb) co-loaded MMP2-responsive mesoporous silica nanoparticles (ST-MSNs) for combined chemoimmunotherapy of hepatocellular carcinoma (HCC). The shell of ST-MSNs was fabricated by Tim-3 mAb through matrix metalloproteinase 2 (MMP2) sensitive peptides as "gatekeepers" to prevent drug release during the blood circulation. In tumor microenvironment, the high levels of MMP2 caused the responsive shedding of Tim-3 mAb, leading to the triggerred release of SF and Tim-3 mAb. Then, SF could be delivered to tumor cells and Tim-3 mAb could be delivered to T cells, respectively. In vivo tumor inhibition study results demonstrated that ST-MSNs can significantly enhance synergistic antitumor activity compared with sequential administration of free SF solution and Tim-3 mAb solution. Meanwhile, the expression of antitumor cytokines IFN-γ, IL-12 and the percentage of CD3+CD4+ cells, CD3+CD8+ cells in tumors were upregulated after the administration of ST-MSNs, demonstrating good immunomodulatory ability. In addition, within the dosage range, the ST-MSNs had low cytotoxicity and hemolysis, and no obvious tissue toxicity was observed. All animal experiments were performed in line with national regulations and approved by the Animal Experiments Ethical Committee of Shandong University. In conclusion, this study provided a promising drug combination of chemoimmunotherapy with good application prospects for clinical HCC treatment, and exhibited a potential drug carrier for clinical chemoimmunotherapy.
ABSTRACT
In the microscale, bacteria with helical body shapes have been reported to yield advantages in many bio-processes. In the human society, there are also wisdoms in knowing how to recognize and make use of helical shapes with multi-functionality. Herein, we designed atypical chiral mesoporous silica nano-screws (CMSWs) with ideal topological structures (e.g., small section area, relative rough surface, screw-like body with three-dimension chirality) and demonstrated that CMSWs displayed enhanced bio-adhesion, mucus-penetration and cellular uptake (contributed by the macropinocytosis and caveolae-mediated endocytosis pathways) abilities compared to the chiral mesoporous silica nanospheres (CMSSs) and chiral mesoporous silica nanorods (CMSRs), achieving extended retention duration in the gastrointestinal (GI) tract and superior adsorption in the blood circulation (up to 2.61- and 5.65-times in AUC). After doxorubicin (DOX) loading into CMSs, DOX@CMSWs exhibited controlled drug release manners with pH responsiveness in vitro. Orally administered DOX@CMSWs could efficiently overcome the intestinal epithelium barrier (IEB), and resulted in satisfactory oral bioavailability of DOX (up to 348%). CMSWs were also proved to exhibit good biocompatibility and unique biodegradability. These findings displayed superior ability of CMSWs in crossing IEB through multiple topological mechanisms and would provide useful information on the rational design of nano-drug delivery systems.
ABSTRACT
Radiation therapy is an effective method to kill cancer cells and shrink tumors using high-energy X-ray or γ-ray. Radiation pneumonitis (RP) is one of the most serious complications of radiation therapy for thoracic cancers, commonly leading to serious respiratory distress and poor prognosis. Here, we prepared curcumin-loaded mesoporous polydopamine nanoparticles (CMPN) for prevention and treatment of RP by pulmonary delivery. Mesoporous polydopamine nanoparticles (MPDA) were successfully synthesized with an emulsion-induced interface polymerization method and curcumin was loaded in MPDA via π‒π stacking and hydrogen bonding interaction. MPDA owned the uniform spherical morphology with numerous mesopores that disappeared after loading curcumin. More than 80% curcumin released from CMPN in 6 h and mesopores recovered. CMPN remarkably protected BEAS-2B cells from γ-ray radiation injury by inhibiting apoptosis. RP rat models were established after a single dose of 15 Gy 60Co γ-ray radiation was performed on the chest area. Effective therapy of RP was achieved by intratracheal administration of CMPN due to free radical scavenging and anti-oxidation ability, and reduced proinflammatory cytokines, high superoxide dismutase, decreased malondialdehyde, and alleviated lung tissue damages were observed. Inhaled CMPN paves a new avenue for the treatment of RP.
ABSTRACT
Objective@#The antibacterial properties and bonding strength of 3M orthodontic adhesive resin modified by chlorhexidine acetate (CHA) composite mesoporous silica were investigated.@*Methods@# CHA with different mass fractions was encapsulated in mesoporous silica nanoparticles (MSNs) (denoted CHA@MSNs). Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were used to characterize the samples. The 3M Z350XT flow resin was divided into 4 groups: group A: 3M+CHA@MSNs (0%); group B: 3M+CHA@MSNs (3%); group C: 3M+CHA@MSNs (5%); and group D: 3M+CHA@MSNs (6.4%), with mass scores of 0%, 3%, 5%, and 6.4%, respectively. The shear strength of the modified adhesive was tested by a universal electronic material testing machine, the adhesive residue was observed by a 10 × magnifying glass, and the adhesive Remnant index (ARI) was calculated. The four groups of modified adhesives were cultured with Streptococcus mutans. The OD540 value of the bacterial solution was measured by a spectrophotometer, and the amount of plaque attachment was observed by scanning electron microscopy to evaluate the antibacterial performance of the adhesives.@*Results@#Infrared spectroscopic analysis of CHA@MSNs showed that CHA was successfully loaded onto MSNs. Under scanning electron microscopy, it could be seen that, after Cha was combined with MSNs, the structure of MSNs changed, as the boundary was fuzzy and aggregated into a layered structure. A comparison of shear strength revealed a statistically significant difference between the groups containing CHA@MSNs and the groups without CHA@MSNs (P<0.05). The value of the shear strength in group D decreased the most, while there was no statistically significant difference between group B and group C (P > 0.05). There was no statistical significance across all groups (P > 0.05), suggesting that the addition of CHA@MSNs had little effect on the bracket shedding. The OD540 value of bacterial fluid indicated that the difference among groups A, B and C was statistically significant (P < 0.05), and the antibacterial effect of group C was the best; there was no statistically significant difference between group C and group D (P > 0.05).@*Conclusions@#Therefore, adding 5% CHA@MSN antibacterial agent significantly improved the antibacterial effect and did not affect the bond strength.
ABSTRACT
Enzymes immobilized onto substrates with excellent selectivity and activity show a high stability and can withstand extreme experimental conditions, and their performance has been shown to be retained after repeated uses. Applications of immobilized enzymes in various fields benefit from their unique characteristics. Common methods, including adsorption, encapsulation, covalent attachment and crosslinking, and other emerging approaches (e.g., MOFs) of enzyme immobilization have been developed mostly in recent years. In accordance with these immobilization methods, the present review elaborates the application of magnetic separable nanoparticles and functionalized SBA-15 and MCM-41 mesoporous materials used in the immobilization of enzymes.
Enzimas imobilizadas em substratos com excelente seletividade e atividade apresentam alta estabilidade e podem suportar condições experimentais extremas, e seu desempenho foi mantido após repetidos usos. As aplicações de enzimas imobilizadas em vários campos se beneficiam de suas características únicas. Métodos comuns, incluindo adsorção, encapsulamento, ligação covalente e reticulação, e outras abordagens emergentes (por exemplo, MOFs) de imobilização de enzima, foram desenvolvidos principalmente nos últimos anos. De acordo com esses métodos de imobilização, a presente revisão elabora a aplicação de nanopartículas magnéticas separáveis e materiais mesoporosos funcionalizados SBA-15 e MCM-41 usados na imobilização de enzimas.
Subject(s)
Enzyme Immobilizing Agents , NanoparticlesABSTRACT
Abstract Enzymes immobilized onto substrates with excellent selectivity and activity show a high stability and can withstand extreme experimental conditions, and their performance has been shown to be retained after repeated uses. Applications of immobilized enzymes in various fields benefit from their unique characteristics. Common methods, including adsorption, encapsulation, covalent attachment and crosslinking, and other emerging approaches (e.g., MOFs) of enzyme immobilization have been developed mostly in recent years. In accordance with these immobilization methods, the present review elaborates the application of magnetic separable nanoparticles and functionalized SBA-15 and MCM-41 mesoporous materials used in the immobilization of enzymes.
Resumo Enzimas imobilizadas em substratos com excelente seletividade e atividade apresentam alta estabilidade e podem suportar condições experimentais extremas, e seu desempenho foi mantido após repetidos usos. As aplicações de enzimas imobilizadas em vários campos se beneficiam de suas características únicas. Métodos comuns, incluindo adsorção, encapsulamento, ligação covalente e reticulação, e outras abordagens emergentes (por exemplo, MOFs) de imobilização de enzima, foram desenvolvidos principalmente nos últimos anos. De acordo com esses métodos de imobilização, a presente revisão elabora a aplicação de nanopartículas magnéticas separáveis e materiais mesoporosos funcionalizados SBA-15 e MCM-41 usados na imobilização de enzimas.
ABSTRACT
Enzymes immobilized onto substrates with excellent selectivity and activity show a high stability and can withstand extreme experimental conditions, and their performance has been shown to be retained after repeated uses. Applications of immobilized enzymes in various fields benefit from their unique characteristics. Common methods, including adsorption, encapsulation, covalent attachment and crosslinking, and other emerging approaches (e.g., MOFs) of enzyme immobilization have been developed mostly in recent years. In accordance with these immobilization methods, the present review elaborates the application of magnetic separable nanoparticles and functionalized SBA-15 and MCM-41 mesoporous materials used in the immobilization of enzymes.
Enzimas imobilizadas em substratos com excelente seletividade e atividade apresentam alta estabilidade e podem suportar condições experimentais extremas, e seu desempenho foi mantido após repetidos usos. As aplicações de enzimas imobilizadas em vários campos se beneficiam de suas características únicas. Métodos comuns, incluindo adsorção, encapsulamento, ligação covalente e reticulação, e outras abordagens emergentes (por exemplo, MOFs) de imobilização de enzima, foram desenvolvidos principalmente nos últimos anos. De acordo com esses métodos de imobilização, a presente revisão elabora a aplicação de nanopartículas magnéticas separáveis e materiais mesoporosos funcionalizados SBA-15 e MCM-41 usados na imobilização de enzimas.
Subject(s)
Enzymes, Immobilized/metabolism , Magnetite Nanoparticles , Enzyme Stability , Adsorption , Hydrogen-Ion ConcentrationABSTRACT
Objective @#To fabricate a co-delivery system of curcumin (CUR) and siRNA based on mesoporous silica nanoparticles (MSN) and investigate its potential application in inducing macrophage M2 polarization.@*Methods@# MSNs were synthesized using the conventional sol-gel method. The interior mesochannels were occupied by small-molecule CUR, while the exterior surface was adsorbed by cationic polymeric polyethyleneimine (PEI) to link the negatively charged siRNA molecules to formulate the (CUR@MSN)PEI/siRNA co-delivery system. The formulation process was monitored by transmission electron microscopy(TEM). The MTT assay was used to evaluate the cytotoxicity in RAW264.7 cells under various concentrations of nanoparticles. Confocal laser scanning microscopy and TEM were used to observe cell internalization using FAM-labeled siRNA. GAPDH-targeting siRNA was used to prepare nanoparticles and then was transfected into RAW264.7 cells to observe the silencing efficiency of target genes. The knockdown efficiency was examined by real-time quantitative PCR. The related control groups were untreated cells, CUR delivery only and the co-delivery of CUR and siRNA negative control. By loading miRNA-130a-3p antisense oligonucleotide (ASO) to transfect RAW264.7 cells, the effects on the polarization of macrophages were observed. The M2 polarization marker arginase 1 (Arg-1) was measured by western blotting. The related control groups were untreated cells, CUR delivery only and co-delivery of CUR and miRNA negative control. @* Results @# The (CUR@MSN)PEI/siRNA co-delivery system was successfully formulated. The nanoparticles exhibited dose-dependent cytotoxicity, and the cell viability was maintained over 90% when the nanoparticle concentration was less than 10 μg/mL. A high cell uptake efficiency was observed, and the target gene knockdown efficiency was greater than 80% (P < 0.05 vs. all the other groups). The CUR delivery-only group and co-delivery of the CUR-and miRNA-negative control group improved Arg-1 expression ~ 3-fold (P < 0.05 vs. untreated cells). Using the co-delivery of CUR and ASO, synergistic effects were obtained, and Arg-1 expression was increased ~ 8-fold (P < 0.05 vs. all the other groups).@*Conclusion @#The CUR-siRNA co-delivery system can effectively transfect macrophages and synergistically induce M2 polarization.
ABSTRACT
Chemotherapy has been a major option in clinic treatment of malignant tumors. However, single chemotherapy faces some drawbacks, such as multidrug resistance, severe side effects, which hinder its clinic application in tumor treatment. Multifunctional nanoparticles loading with chemotherapeutic agent and photosensitizer could be a promising way to efficiently conduct tumor combination therapy. In the current study, a novel pH-sensitive and bubble-generating mesoporous silica-based drug delivery system (denoted as M(a)D@PI-PEG-RGD) was constructed. Ammonium bicarbonate (NH
ABSTRACT
OBJECTIVE: To construct a biomimetic delivery system (U251/MSN-DOX), and assess its application of glioma targeted therapy. METHODS: U251 cell membrane was coated on the surface of mesoporous silica nanoparticles(MSN) by co-extrusion to prepare cell membrane biomimetic nanoparticles U251/MSN-DOX. The particle size, potential and morphology were characterized. The physical characteristics, loading content (LC) and encapsulation efficiency (EE) of these nanoparticles were determined. Their toxicity of normal cells was investigated. Their cellular uptake of different formulations in U251 was studied by flow cytometry and fluorescence confocal microscope. Additionally, we assessed the transmembrane transport efficiency of nanoparticles via in vitro BBB. RESULTS: The cell membrane-coated nanoparticles U251/MSN were spherical, and a distinct "core-shell" structure could be observed. The particle size was (135.70±3.85) nm, the LC was (18.57±2.17)%, and the EE was (64.99±2.52)%. The cell experiment showed that U251/MSN had low cytotoxicity and U251/MSN-DOX exhibited stronger cellular uptake ability and BBB transporting efficiency. CONCLUSION: The glioma cell membrane can be coated on the surface of MSN to construct biomimetic nanoparticles U251/MSN. The biomimetic nanoparticles not only are capable of targeting the homologous tumor cells, but also show the enhanced ability to penetrate BBB, which indicate potential applications in the field of tumor targeted drug delivery especially in brain tumor.
ABSTRACT
As a new potential bone graft material, tissue engineered bone effectively compensates for the defects of today's bone repair materials. Meanwhile, mesoporous silica nanomaterials(MSNs) have been widely recognized due to their large specific surface area, good biocompatibility, and capability of further processing and modification. They have promising application prospects in bone tissue engineering. For the basic scientific research results that have been carried out in the early stage, the basic characteristics of mesoporous silica nano biomaterials and their application advantages, research status and development prospects in bone tissue engineering are reviewed. As for the research status, there are two aspects--as a carrier or as a component of engineering scaffolds. For the first aspect, different kinds of loaded drugs and different loading methods are reviewed. For the second, microstructure and mechanical properties of various complex scaffolds containing MSNs and the molecular and cellular behavior of seeded cells on these scaffolds are reviewed. The research of MSNs in bone cements and metal ions doped MSNs in bone tissue engineering are also included. The future development of MSNs in bone tissue engineering is also discussed.
Subject(s)
Bone and Bones , Nanoparticles , Porosity , Silicon Dioxide , Tissue EngineeringABSTRACT
Urea's thermal instability and burning on sensitive skin can cause problems for cosmetic formulations. To overcome these drawbacks, urea was incorporated into ordered mesoporous silica (SBA-15). SBA-15 was synthesized using tetraethyl orthosilicate and Pluronic® P123 in an acid medium. Urea (20 wt.%) was incorporated into calcined SBA-15 by the incipient wetness impregnation method. Several techniques were used to characterize the samples. Skin hydration and transepidermal water loss were measured using Corneometer® CM 825 PC and Tewameter® 300 TM. Results showed that the structural properties of SBA-15Urea were similar to pure SBA-15, indicating that SBA-15 remained structured even after urea incorporation. Nitrogen physisorption data showed the volume and surface area of the pores in SBA-15Urea were much lower than those in SBA-15, demonstrating that urea was deposited inside the mesopores. In vivo moisturization studies revealed that SBA-15Urea was not able to reduce transepidermal water loss compared to the other products and control, while forming a non-occlusive surface film on the skin. We conclude that incorporation of urea in the pores of the inorganic SBA-15 matrix is a promising approach to enhancing its stability and providing a prolonged moisturizing effect.
Subject(s)
Urea/analysis , Silicon Dioxide/administration & dosage , Skin/drug effects , Fluid Therapy/adverse effectsABSTRACT
Abstract Objective There is increasingly common the consumption more times a day of foods and acidic drinks in the diet of the population. The present study aimed to evaluate and compare the effects of a calcium mesoporous silica nanoparticle single application of other calcium and/or fluoride products in reducing the progression of dental erosion. Methodology Half of the eroded area was covered of 60 blocks of enamel, after which the block was submitted to the following treatments: (Ca2+-MSN), casein phosphopeptide-amorphous calcium phosphate (CPP-ACP); CPP-ACP/F-(900 ppm F−); titanium tetrafluoride (TiF4 1%) (positive control); sodium fluoride (NaF 1.36%) (positive control); and Milli-Q® water (negative control) before being submitted to a second erosive challenge. A surface analysis was performed via a three-dimensional (3D) noncontact optical profilometry to assess the volumetric roughness (Sa) and tooth structure loss (TSL) and and through scanning electron microscopy (MEV). An analysis of variance (ANOVA) and Tukey's test were performed. Results Regarding Sa, all experimental groups exhibited less roughness than the control (p<0.05). The TSL analysis revealed that the Ca2+-MSN and NaF groups were similar (p>0.05) and more effective in minimizing tooth loss compared with the other groups (p<0.05). Conclusions The Ca2+-MSN and NaF treatments were superior compared with the others and the negative control.