Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 576
Filter
1.
Rev. Assoc. Med. Bras. (1992) ; 68(5): 664-669, May 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1376200

ABSTRACT

SUMMARY OBJECTIVE: This study aimed to examine the prognostic effect of the tumor-stroma ratio, which has been shown to have prognostic value in various cancers, in patients with gallbladder cancer who have undergone curative resection. METHODS: The records of gallbladder cancer patients who underwent surgical treatment in our clinic between December 2005 and March 2021 were analyzed retrospectively. The hematoxylin and eosin-stained sections representing the tumors were evaluated under light microscopy to determine tumor-stroma ratio, and based on the results, <50% was defined as the stroma-rich and ≥50% as the stroma-poor groups. RESULTS: A total of 28 patients, including 20 females and 8 males, with a mean age of 64.6 years, were included in this study. Stroma-poor and stroma-rich tumors were detected in 15 and 13 patients, respectively. There was no statistically significant relationship identified between tumor-stroma ratio and advanced age, gender, serum levels of carbohydrate antigen 19-9 and carcinoembryonic antigen, incidental or nonincidental diagnosis, jaundice, adjacent organ or structure resection, tumor location, grades 1-2 or 3, T1/T2 or T3/T4, N0 or N1/N2, M stage, American Joint Committee on Cancer stage, lymphovascular invasion, and perineural invasion. The stroma-poor and stroma-rich groups had a 5-year survival rate of 30% and 19.2% and a median overall survival of 25.7 and 15.1 months, respectively, with no statistically significant difference between the groups (p=0.526). CONCLUSIONS: A low tumor-stroma ratio tended to be a poor prognostic factor in gallbladder cancer, although not to a statistically significant degree. This can be considered one of the preliminary studies, as further studies involving larger groups are needed.

2.
Journal of Medical Biomechanics ; (6): E180-E185, 2022.
Article in Chinese | WPRIM | ID: wpr-920688

ABSTRACT

Neovascularization plays an important role in many physiological and pathological processes, but its mechanism is still unclear. Since vascular cells are subjected to a variety of biochemical and biomechanical stimulations in vivo and live in a complex microenvironment, it is necessary to construct the vascular model in vitro and simulate the in vivo microenvironment to explore the mechanism of neovascularization. Recently, owing to the advance of micromachining and microfluidic technology, various in vitro microvascular models have emerged. Variables such as shear stress, interstitial flow and biochemical gradient of angiogenic factors have been controlled in these models, which greatly promotes the research of neovascularization. The construction, development and biomechanical design of various microvascular models are reviewed in this paper.

3.
Acta Pharmaceutica Sinica ; (12): 242-250, 2022.
Article in Chinese | WPRIM | ID: wpr-913180

ABSTRACT

There are two serious obstacles to tumor immunotherapy. Firstly, the immune response of the tumor is seriously reduced due to immunosuppressive tumor microenvironment (ITM) and low immunogenicity of tumor. The second obstacle is the dense and complex heterogeneous structures, which seriously prevent the nanoparticles (NPs) from penetrating deeper into tumor tissue. Immunogenic cell death (ICD) induced by doxorubicin (DOX) is an effective method to enhance tumor immune activity. However, interferon-γ (IFN-γ) secreted by cytotoxic T lymphocytes (CTL) after ICD induction would increase the expression of indoleamine 2,3-dioxygenase 1 (IDO1) and enhance ITM. IDO1 siRNA would reduce the expression of IDO1 protein, regulate the tumor immunosuppressive microenvironment and regulate ITM, so as to enhance the ICD effect of DOX. In this paper, a novel charge conversional, particle size reduction and highly penetrable NPs based on a pH sensitive copolymer poly(ethylene glycol)-poly-L-lysine-2,3-dimethylmaleic anhydride (mPEG-PLL-DMA, PLD) and polyamidoamine (PAMAM) dendrimers to achieve deep delivery of tumor tissue. DOX and IDO1 siRNA were encapsulated to achieve efficient tumor immunotherapy. Preparation and cell level experiments showed that PLD material had significant pH sensitivity. Results of 3D tumor penetrable experiment in vitro showed that adding the pH sensitive material PLD significantly improved the permeability of the preparation. In addition, 4T1 tumor model was established for BALB/c mice and all animal experiments were displayed in according with the requirements of the Animal Experiment Ethics Committee of Shenyang Pharmaceutical University. The results of in vivo efficacy experiments and tissue experiments evaluated that IDO1 siRNA significantly improved the ICD effect owing to DOX, so as to significantly inhibit tumor growth.

4.
Acta Pharmaceutica Sinica ; (12): 109-121, 2022.
Article in Chinese | WPRIM | ID: wpr-913176

ABSTRACT

Cancer is considered as one of the major diseases endangering human health in the world, it is urgent to find a safer and more efficient treatment for cancer therapy. Gene therapy with ribonucleic acid (RNA) drugs could regulate the expression of tumor related genes, and exhibit good anti-tumor therapeutic potential in preclinical and clinical trials. Based on the differences between tumor tissues and normal tissues in microenvironment signal characteristics such as pH, specific enzyme concentration or redox gradient, various microenvironment responsive nanocarriers had been studied and developed to deliver RNA drugs to tumor tissues and cells, improving the anti-tumor efficacy of RNA drugs and reducing toxic and side effects. This paper reviews the pathophysiological characteristics of tumor microenvironment and various strategies of tumor microenvironment responsive nanocarriers, in order to provide reference for the design of safe and efficient RNA drug delivery system for cancer therapy.

5.
Acta Pharmaceutica Sinica ; (12): 98-108, 2022.
Article in Chinese | WPRIM | ID: wpr-913172

ABSTRACT

Tumor microenvironment (TME) is composed of abnormal tumor vasculature, extracellular matrix components, endothelial cells, pericytes, tumor associated fibroblasts, smooth muscle cells and immune cells, which is characterized by hypoxia, acidosis and high interstitial fluid pressure. Hypoxia and acidosis within the TME trigger an adjustment of the extracellular matrix (ECM), a response from neighbor stromal cells (e.g., fibroblasts) and immune cells (lymphocytes and macrophages), inducing tumor growth, angiogenesis, and ultimately, resulting in metastasis. What's more, the components of TME including abnormal tumor vasculature, rich composition of the ECM, and abundant stroma cells impair tumoral distribution and penetration of the drugs. At the same time, this stromal microenvironment plays a vital role in creating an immunosuppressive environment.Over the past years, more and more researches focus on targeting and remolding TME to improve therapeutic effects against tumors. Herein, we reviewed current strategies developed to target and remodel TME, including modulating tumor hypoxia, tumor vasculature, tumor associated fibroblasts, extracellular matrix components, tumor associated macrophage phenotypes and dendritic cells. Also, potential problems and future directions are pointed out in this review.

6.
Acta Pharmaceutica Sinica ; (12): 64-75, 2022.
Article in Chinese | WPRIM | ID: wpr-913168

ABSTRACT

As a basic amino acid, histidine has a pKa close to the acidity of the tumor microenvironment, thus the charge and solubility of histidine are able to vary as the pH changes. Under a neutral environment, histidine is not charged and exhibits hydrophobic properties, while it can be protonated and becomes hydrophilic when exposed to mildly acidic pH, such as tumor microenvironment. Therefore, histidine is widely used in the design of drug delivery systems to target the mildly acidic pH of tumor microenvironment. This article reviews the recent progresses of histidine-based tumor-targeting drug delivery systems, and summarizes the principles on promoting internalization and tuning drug release by taking advantage of histidine. Finally, we point out the common issues on histidine application and illustrate its future prospects.

7.
Acta Pharmaceutica Sinica ; (12): 46-63, 2022.
Article in Chinese | WPRIM | ID: wpr-913167

ABSTRACT

In recent years, immunotherapy has made great progress in clinical cancer therapy. However, the poor tumor specificity, low intra-tumoral penetration, and low cellular uptake in the systemic delivery of immunotherapeutic drugs lead to low efficacy and poor safety, limiting the development of immunotherapy. Active tumor-targeting nano drug delivery systems (aNDDS) can enhance the concentration of drugs in target cells through the interaction between surface-conjugated antibodies or ligands and the receptors on target cell membranes, providing a viable strategy for specific and efficient drug delivery. In addition, some specific types of cell membranes with the natural targeting ability have been exploited for the construction of biomimetic nanocarriers to improve the drug delivery efficiency. In view of the many advantages of active tumor-targeting nanocarriers, researchers also have designed a series of aNDDS for promoting antitumor immune responses and proved that they improved the efficacy and safety of immunotherapy. In this review, we summarize the recent progress on aNDDS for improving the tumor immunotherapy and look forward to the main challenges and future directions in this field.

8.
Acta Pharmaceutica Sinica B ; (6): 2592-2608, 2022.
Article in English | WPRIM | ID: wpr-929393

ABSTRACT

Self-assembling carrier-free nanodrugs are attractive agents because they accumulate at tumor by an enhanced permeability and retention (EPR) effect without introduction of inactive substances, and some nanodrugs can alter the immune environment. We synthesized a peptidyl arginine deiminase 4 (PAD4) molecular inhibitor, ZD-E-1M. It could self-assembled into nanodrug ZD-E-1. Using confocal laser scanning microscopy, we observed its cellular colocalization, PAD4 activity and neutrophil extracellular traps (NETs) formation. The populations of immune cells and expression of immune-related proteins were determined by single-cell mass cytometry. ZD-E-1 formed nanoflowers in an acidic environment, whereas it formed nanospheres at pH 7.4. Accumulation of ZD-E-1 at tumor was pH-responsive because of its pH-dependent differences in the size and shape. It could enter the nucleus and bind to PAD4 to prolong the intracellular retention time. In mice, ZD-E-1 inhibited tumor growth and metastasis by inhibiting PAD4 activity and NETs formation. Besides, ZD-E-1 could regulate the ratio of immune cells in LLC tumor-bearing mice. Immunosuppressive proteins like LAG3 were suppressed, while IFN-γ and TNF-α as stimulators of tumor immune response were upregulated. Overall, ZD-E-1 is a self-assembling carrier-free nanodrug that responds to pH, inhibits PAD4 activity, blocks neutrophil extracellular traps formation, and improves the tumor immune microenvironment.

9.
Acta Pharmaceutica Sinica B ; (6): 1163-1185, 2022.
Article in English | WPRIM | ID: wpr-929376

ABSTRACT

Cancer immunotherapy has become a new generation of anti-tumor treatment, but its indications still focus on several types of tumors that are sensitive to the immune system. Therefore, effective strategies that can expand its indications and enhance its efficiency become the key element for the further development of cancer immunotherapy. Natural products are reported to have this effect on cancer immunotherapy, including cancer vaccines, immune-check points inhibitors, and adoptive immune-cells therapy. And the mechanism of that is mainly attributed to the remodeling of the tumor-immunosuppressive microenvironment, which is the key factor that assists tumor to avoid the recognition and attack from immune system and cancer immunotherapy. Therefore, this review summarizes and concludes the natural products that reportedly improve cancer immunotherapy and investigates the mechanism. And we found that saponins, polysaccharides, and flavonoids are mainly three categories of natural products, which reflected significant effects combined with cancer immunotherapy through reversing the tumor-immunosuppressive microenvironment. Besides, this review also collected the studies about nano-technology used to improve the disadvantages of natural products. All of these studies showed the great potential of natural products in cancer immunotherapy.

10.
Acta Pharmaceutica Sinica B ; (6): 1487-1499, 2022.
Article in English | WPRIM | ID: wpr-929356

ABSTRACT

The unique characteristics of the tumor microenvironment (TME) could be exploited to develop antitumor nanomedicine strategies. However, in many cases, the actual therapeutic effect is far from reaching our expectations due to the notable tumor heterogeneity. Given the amplified characteristics of TME regulated by vascular disrupting agents (VDAs), nanomedicines may achieve unexpected improved efficacy. Herein, we fabricate platelet membrane-fusogenic liposomes (PML/DP&PPa), namely "platesomes", which actively load the hypoxia-activated pro-prodrug DMG-PR104A (DP) and physically encapsulate the photosensitizer pyropheophorbide a (PPa). Considering the different stages of tumor vascular collapse and shutdown induced by a VDA combretastatin-A4 phosphate (CA4P), PML/DP&PPa is injected 3 h after intraperitoneal administration of CA4P. First, CA4P-mediated tumor hemorrhage amplifies the enhanced permeation and retention (EPR) effect, and the platesome-biological targeting further promotes the tumor accumulation of PML/DP&PPa. Besides, CA4P-induced vascular occlusion inhibits oxygen supply, followed by photodynamic therapy-caused acute tumor hypoxia. This prolonged extreme hypoxia contributes to the complete activation of DP and then high inhibitory effect on tumor growth and metastasis. Thus, such a combining strategy of artificially-regulated TME and bio-inspired platesomes pronouncedly improves tumor drug delivery and boosts tumor hypoxia-selective activation, and provides a preferable solution to high-efficiency cancer therapy.

11.
Acta Pharmaceutica Sinica B ; (6): 967-981, 2022.
Article in English | WPRIM | ID: wpr-929338

ABSTRACT

Tumor-targeted immunotherapy is a remarkable breakthrough, offering the inimitable advantage of specific tumoricidal effects with reduced immune-associated cytotoxicity. However, existing platforms suffer from low efficacy, inability to induce strong immunogenic cell death (ICD), and restrained capacity of transforming immune-deserted tumors into immune-cultivated ones. Here, an innovative platform, perfluorooctyl bromide (PFOB) nanoemulsions holding MnO2 nanoparticles (MBP), was developed to orchestrate cancer immunotherapy, serving as a theranostic nanoagent for MRI/CT dual-modality imaging and advanced ICD. By simultaneously depleting the GSH and eliciting the ICD effect via high-intensity focused ultrasound (HIFU) therapy, the MBP nanomedicine can regulate the tumor immune microenvironment by inducing maturation of dendritic cells (DCs) and facilitating the activation of CD8+ and CD4+ T cells. The synergistic GSH depletion and HIFU ablation also amplify the inhibition of tumor growth and lung metastasis. Together, these findings inaugurate a new strategy of tumor-targeted immunotherapy, realizing a novel therapeutics paradigm with great clinical significance.

12.
Acta Pharmaceutica Sinica B ; (6): 787-800, 2022.
Article in English | WPRIM | ID: wpr-929327

ABSTRACT

The bile acid-responsive G-protein-coupled receptor TGR5 is expressed in monocytes and macrophages, and plays a critical role in regulating inflammatory response. Our previous work has shown its role in promoting the progression of non-small cell lung cancer (NSCLC), yet the mechanism remains unclear. Here, using Tgr5-knockout mice, we show that TGR5 is required for M2 polarization of tumor-associated macrophages (TAMs) and suppresses antitumor immunity in NSCLC via involving TAMs-mediated CD8+ T cell suppression. Mechanistically, we demonstrate that TGR5 promotes TAMs into protumorigenic M2-like phenotypes via activating cAMP-STAT3/STAT6 signaling. Induction of cAMP production restores M2-like phenotypes in TGR5-deficient macrophages. In NSCLC tissues from human patients, the expression of TGR5 is associated with the infiltration of TAMs. The co-expression of TGR5 and high TAMs infiltration are associated with the prognosis and overall survival of NSCLC patients. Together, this study provides molecular mechanisms for the protumor function of TGR5 in NSCLC, highlighting its potential as a target for TAMs-centric immunotherapy in NSCLC.

13.
Acta Pharmaceutica Sinica B ; (6): 821-837, 2022.
Article in English | WPRIM | ID: wpr-929309

ABSTRACT

Acidosis, regardless of hypoxia involvement, is recognized as a chronic and harsh tumor microenvironment (TME) that educates malignant cells to thrive and metastasize. Although overwhelming evidence supports an acidic environment as a driver or ubiquitous hallmark of cancer progression, the unrevealed core mechanisms underlying the direct effect of acidification on tumorigenesis have hindered the discovery of novel therapeutic targets and clinical therapy. Here, chemical-induced and transgenic mouse models for colon, liver and lung cancer were established, respectively. miR-7 and TGF-β2 expressions were examined in clinical tissues (n = 184). RNA-seq, miRNA-seq, proteomics, biosynthesis analyses and functional studies were performed to validate the mechanisms involved in the acidic TME-induced lung cancer metastasis. Our data show that lung cancer is sensitive to the increased acidification of TME, and acidic TME-induced lung cancer metastasis via inhibition of miR-7-5p. TGF-β2 is a direct target of miR-7-5p. The reduced expression of miR-7-5p subsequently increases the expression of TGF-β2 which enhances the metastatic potential of the lung cancer. Indeed, overexpression of miR-7-5p reduces the acidic pH-enhanced lung cancer metastasis. Furthermore, the human lung tumor samples also show a reduced miR-7-5p expression but an elevated level of activated TGF-β2; the expressions of both miR-7-5p and TGF-β2 are correlated with patients' survival. We are the first to identify the role of the miR-7/TGF-β2 axis in acidic pH-enhanced lung cancer metastasis. Our study not only delineates how acidification directly affects tumorigenesis, but also suggests miR-7 is a novel reliable biomarker for acidic TME and a novel therapeutic target for non-small cell lung cancer (NSCLC) treatment. Our study opens an avenue to explore the pH-sensitive subcellular components as novel therapeutic targets for cancer treatment.

14.
Acta Pharmaceutica Sinica B ; (6): 467-482, 2022.
Article in English | WPRIM | ID: wpr-929307

ABSTRACT

Tumor metastasis is responsible for most mortality in cancer patients, and remains a challenge in clinical cancer treatment. Platelets can be recruited and activated by tumor cells, then adhere to circulating tumor cells (CTCs) and assist tumor cells extravasate in distant organs. Therefore, nanoparticles specially hitchhiking on activated platelets are considered to have excellent targeting ability for primary tumor, CTCs and metastasis in distant organs. However, the activated tumor-homing platelets will release transforming growth factor-β (TGF-β), which promotes tumor metastasis and forms immunosuppressive microenvironment. Therefore, a multitalent strategy is needed to balance the accurate tumor tracking and alleviate the immunosuppressive signals. In this study, a fucoidan-functionalized micelle (FD/DOX) was constructed, which could efficiently adhere to activated platelets through P-selectin. Compared with the micelle without P-selectin targeting effect, FD/DOX had increased distribution in both tumor tissue and metastasis niche, and exhibited excellent anti-tumor and anti-metastasis efficacy on 4T1 spontaneous metastasis model. In addition, due to the contribution of fucoidan, FD/DOX treatment was confirmed to inhibit the expression of TGF-β, thereby stimulating anti-tumor immune response and reversing the immunosuppressive microenvironment. The fucoidan-functionalized activated platelets-hitchhiking micelle was promising for the metastatic cancer treatment.

15.
Acta Pharmaceutica Sinica B ; (6): 451-466, 2022.
Article in English | WPRIM | ID: wpr-929306

ABSTRACT

The combination of chemotherapy and immunotherapy motivates a potent immune system by triggering immunogenic cell death (ICD), showing great potential in inhibiting tumor growth and improving the immunosuppressive tumor microenvironment (ITM). However, the therapeutic effectiveness has been restricted by inferior drug bioavailability. Herein, we reported a universal bioresponsive doxorubicin (DOX)-based nanogel to achieve tumor-specific co-delivery of drugs. DOX-based mannose nanogels (DM NGs) was designed and choosed as an example to elucidate the mechanism of combined chemo-immunotherapy. As expected, the DM NGs exhibited prominent micellar stability, selective drug release and prolonged survival time, benefited from the enhanced tumor permeability and prolonged blood circulation. We discovered that the DOX delivered by DM NGs could induce powerful anti-tumor immune response facilitated by promoting ICD. Meanwhile, the released mannose from DM NGs was proved as a powerful and synergetic treatment for breast cancer in vitro and in vivo, via damaging the glucose metabolism in glycolysis and the tricarboxylic acid cycle. Overall, the regulation of tumor microenvironment with DOX-based nanogel is expected to be an effectual candidate strategy to overcome the current limitations of ICD-based immunotherapy, offering a paradigm for the exploitation of immunomodulatory nanomedicines.

16.
Acta Pharmaceutica Sinica B ; (6): 378-393, 2022.
Article in English | WPRIM | ID: wpr-929301

ABSTRACT

The immune checkpoint blockade therapy has profoundly revolutionized the field of cancer immunotherapy. However, despite great promise for a variety of cancers, the efficacy of immune checkpoint inhibitors is still low in colorectal cancer (CRC). This is mainly due to the immunosuppressive feature of the tumor microenvironment (TME). Emerging evidence reveals that certain chemotherapeutic drugs induce immunogenic cell death (ICD), demonstrating great potential for remodeling the immunosuppressive TME. In this study, the potential of ginsenoside Rg3 (Rg3) as an ICD inducer against CRC cells was confirmed using in vitro and in vivo experimental approaches. The ICD efficacy of Rg3 could be significantly enhanced by quercetin (QTN) that elicited reactive oxygen species (ROS). To ameliorate in vivo delivery barriers associated with chemotherapeutic drugs, a folate (FA)-targeted polyethylene glycol (PEG)-modified amphiphilic cyclodextrin nanoparticle (NP) was developed for co-encapsulation of Rg3 and QTN. The resultant nanoformulation (CD-PEG-FA.Rg3.QTN) significantly prolonged blood circulation and enhanced tumor targeting in an orthotopic CRC mouse model, resulting in the conversion of immunosuppressive TME. Furthermore, the CD-PEG-FA.Rg3.QTN achieved significantly longer survival of animals in combination with Anti-PD-L1. The study provides a promising strategy for the treatment of CRC.

17.
Acta Pharmaceutica Sinica B ; (6): 353-363, 2022.
Article in English | WPRIM | ID: wpr-929299

ABSTRACT

Nucleic acid drugs are highly applicable for cancer immunotherapy with promising therapeutic effects, while targeting delivery of these drugs to disease lesions remains challenging. Cationic polymeric nanoparticles have paved the way for efficient delivery of nucleic acid drugs, and achieved stimuli-responsive disassembly in tumor microenvironment (TME). However, TME is highly heterogeneous between individuals, and most nanocarriers lack active-control over the release of loaded nucleic acid drugs, which will definitely reduce the therapeutic efficacy. Herein, we have developed a light-controllable charge-reversal nanoparticle (LCCN) with controlled release of polyinosinic-polycytidylic acid [Poly(I:C)] to treat triple negative breast cancer (TNBC) by enhanced photodynamic immunotherapy. The nanoparticles keep suitably positive charge for stable loading of Poly(I:C), while rapidly reverse to negative charge after near-infrared light irradiation to release Poly(I:C). LCCN-Poly(I:C) nanoparticles trigger effective phototoxicity and immunogenic cell death on 4T1 tumor cells, elevate antitumor immune responses and inhibit the growth of primary and abscopal 4T1 tumors in mice. The approach provides a promising strategy for controlled release of various nucleic acid-based immune modulators, which may enhance the efficacy of photodynamic immunotherapy against TNBC.

18.
Acta Pharmaceutica Sinica B ; (6): 149-166, 2022.
Article in English | WPRIM | ID: wpr-929285

ABSTRACT

Colorectal cancer (CRC), a malignant tumor worldwide consists of microsatellite instability (MSI) and stable (MSS) phenotypes. Although SHP2 is a hopeful target for cancer therapy, its relationship with innate immunosuppression remains elusive. To address that, single-cell RNA sequencing was performed to explore the role of SHP2 in all cell types of tumor microenvironment (TME) from murine MC38 xenografts. Intratumoral cells were found to be functionally heterogeneous and responded significantly to SHP099, a SHP2 allosteric inhibitor. The malignant evolution of tumor cells was remarkably arrested by SHP099. Mechanistically, STING-TBK1-IRF3-mediated type I interferon signaling was highly activated by SHP099 in infiltrated myeloid cells. Notably, CRC patients with MSS phenotype exhibited greater macrophage infiltration and more potent SHP2 phosphorylation in CD68+ macrophages than MSI-high phenotypes, suggesting the potential role of macrophagic SHP2 in TME. Collectively, our data reveals a mechanism of innate immunosuppression mediated by SHP2, suggesting that SHP2 is a promising target for colon cancer immunotherapy.

19.
Acta Pharmaceutica Sinica B ; (6): 92-106, 2022.
Article in English | WPRIM | ID: wpr-929283

ABSTRACT

Nanoparticulate drug delivery systems (Nano-DDSs) have emerged as possible solution to the obstacles of anticancer drug delivery. However, the clinical outcomes and translation are restricted by several drawbacks, such as low drug loading, premature drug leakage and carrier-related toxicity. Recently, pure drug nano-assemblies (PDNAs), fabricated by the self-assembly or co-assembly of pure drug molecules, have attracted considerable attention. Their facile and reproducible preparation technique helps to remove the bottleneck of nanomedicines including quality control, scale-up production and clinical translation. Acting as both carriers and cargos, the carrier-free PDNAs have an ultra-high or even 100% drug loading. In addition, combination therapies based on PDNAs could possibly address the most intractable problems in cancer treatment, such as tumor metastasis and drug resistance. In the present review, the latest development of PDNAs for cancer treatment is overviewed. First, PDNAs are classified according to the composition of drug molecules, and the assembly mechanisms are discussed. Furthermore, the co-delivery of PDNAs for combination therapies is summarized, with special focus on the improvement of therapeutic outcomes. Finally, future prospects and challenges of PDNAs for efficient cancer therapy are spotlighted.

20.
Protein & Cell ; (12): 167-179, 2022.
Article in English | WPRIM | ID: wpr-929172

ABSTRACT

Tumors are complex ecosystems in which heterogeneous cancer cells interact with their microenvironment composed of diverse immune, endothelial, and stromal cells. Cancer biology had been studied using bulk genomic and gene expression profiling, which however mask the cellular diversity and average the variability among individual molecular programs. Recent advances in single-cell transcriptomic sequencing have enabled a detailed dissection of tumor ecosystems and promoted our understanding of tumorigenesis at single-cell resolution. In the present review, we discuss the main topics of recent cancer studies that have implemented single-cell RNA sequencing (scRNA-seq). To study cancer cells, scRNA-seq has provided novel insights into the cancer stem-cell model, treatment resistance, and cancer metastasis. To study the tumor microenvironment, scRNA-seq has portrayed the diverse cell types and complex cellular states of both immune and non-immune cells interacting with cancer cells, with the promise to discover novel targets for future immunotherapy.


Subject(s)
Ecosystem , Gene Expression Profiling , Genomics , Humans , Neoplasms/pathology , Sequence Analysis, RNA , Single-Cell Analysis , Transcriptome , Tumor Microenvironment/genetics
SELECTION OF CITATIONS
SEARCH DETAIL