Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 155
Filter
1.
Article in Chinese | WPRIM | ID: wpr-933314

ABSTRACT

Objective:To evaluate the effects of different densities of rat cardiac fibroblasts (RCF) subjected to hypothermic hypoxia-reoxygenation on cardiomyocyte injury and intercellular coupling.Methods:RCF was cultured in vitro and divided into 3 groups ( n=12 each) using a random number table method: RCF density 0.5×10 5 cells/ml group (T 0.5 group), RCF density 1.0×10 5 cells/ml group (T 1.0 group), and RCF density 2.0×10 5 cells/ml group (T 2.0 group). The three groups were placed in an anoxic device, into which 95% N 2 + 5% CO 2 was continuously blown at the speed of 5 L/min for 15 min, and then placed in a 4 ℃ refrigerator for 1 h for low temperature treatment.After completion of culture, cells were placed in a incubator containing 95% air + 5% CO 2 at 37 ℃ for 4 h of reoxygenation.After the end of culture, RCF in three groups were indirectly co-cultured with cardiomyocytes of the same density (1.0×10 5 cells/ml) in a Transwell chamber for 16 h, cardiomyocytes were seeded in the lower chamber of Transwell, and RCF were seeded in the upper chamber of Transwell.After the end of co-culture, cardiomyocytes were collected for determination of the cell viability (by CCK8 method), apoptosis rate (by flow cytometry), expression of connexin 43 (Cx43) mRNA (by real-time fluorescence quantitative polymerase chain reaction), and expression of Cx43 and phosphorylated Cx43 (p-Cx43) (by Western blot). Results:Compared with T 0.5 group, the cell viability, apoptosis rate and expression of Cx43, p-Cx43 and Cx43 mRNA were significantly decreased in T 1.0 and T 2.0 groups ( P<0.01). Compared with T 1.0 group, the cell viability, apoptosis rate and expression of Cx43 and p-Cx43 were significantly decreased ( P<0.01), and no significant change was found in expression of Cx43 mRNA in cardiomyocytes in T 2.0 group ( P>0.05). Conclusions:RCF subjected to hypothermic hypoxia-reoxygenation induces cardiomyocyte injury in a density-dependent manner in a certain range, and the mechanism may be related to down-regulation of the expression of Cx43 and reduction of the activity of Cx43.

2.
Article in Chinese | WPRIM | ID: wpr-933301

ABSTRACT

Objective:To evaluate the role of ferroptosis in hypoxia-reoxygenation (H/R) injury in cardiomyocytes cultured in high-fat high-glucose (HFHG) medium.Methods:Cardiomyocytes H9c2 cells were commonly cultured and divided into 3 groups ( n=20 each) using a random number table method: control group (C group), HFHG-H/R group and Ferrostatin-1 (Fer-1) plus HFHG-H/R group (Fer-1+ HFHG+ H/R group). H9c2 cells were cultured in a HFHG medium for 12 h and then exposed to 1%O 2-5%CO 2-94%N 2 for 4 h, followed by 2 h reoxygenation in a cell incubator.Fer-1 at a final concentration of 10 μmol/L was added while the cells were cultured in the HFHG medium in group Fer-1+ HFHG+ H/R.At 2 h of reoxygenation, the cell viability was measured using CCK-8 assay, the activity of lactate dehydrogenase (LDH) in the supernatant was measured using 2, 4-dinitrophenylhydrazine color method, the activity of reactive oxygen species (ROS) was measured by fluorescent probe DCFH-DA flow cytometry, and the expression of acyl-CoA synthetase long-chain family member 4 (ACSL4), nuclear receptor coactivator 4 (NCOA4), and glutathione peroxidase 4 (GPX4) was detected by Western blot. Results:Compared with group C, the cell viability was significantly decreased, the activities of LDH release and ROS were increased, and the expression of ACSL4 and NCOA4 was up-regulated ( P<0.05), and no significant change was found in the expression of GPX4 in group HFHG+ H/R ( P>0.05). Compared with group HFHG+ H/R, the cell activity was significantly increased, the activities of LDH and ROS were decreased, and the expression of ACSL4 and NCOA4 was down-regulated ( P<0.05), and no significant change was found in the expression of GPX4 in Fer-1+ HFHG+ H/R group ( P>0.05). Conclusions:Ferroptosis is involved in the process of H/R injury in cardiomyocytes cultured in HFHG medium.

3.
Article in Chinese | WPRIM | ID: wpr-933298

ABSTRACT

Objective:To evaluate the effect of rat cardiac fibroblasts (RCF) on the expression of connexin43 (Cx43) in H9c2 cells during hypothermic hypoxia/reoxygenation.Methods:H9c2 cells cultured in vitro were divided into 4 groups ( n=12 each) using the random number table method: control group (group C), hypothermic hypoxia/reoxygenation group (group HHR), RCF co-culture group (group Co) and RCF co-culture plus hypothermic hypoxia/reoxygenation group (group Co+ HHR). Group C was incubated at 37℃ in 5% CO 2 + 95% air for 5 h. Group HHR was incubated at 4 ℃ in 5% CO 2 + 95% N 2 for 1 h and then at 37 ℃ in 5% CO 2 + 95% air for 4 h. In group Co and group Co+ HHR, H9c2 cells 0.3×10 5 cells/well were inoculated in the lower chamber and RCF 0.6×10 5 cells/well in the the upper chamber of a transwell ? culture dish.Group Co was incubated at 37 ℃ in 5% CO 2 + 95% air for 5 h. Group Co+ HHR was incubated at 4℃ in 95% N 2 + 5% CO 2 for 1 h, and then incubated at 37 ℃ in 5% CO 2 + 95% air for 4 h. The mortality rate of H9c2 cells was measured by trypan blue staining, the expression of Cx43 and extracellular signal-regulated protein kinases 1/2 (ERK1/2) by immunofluorescence, and the expression of Cx43, phosphorylated Cx43, ERK1/2 and phosphorylated ERK1/2 by Western blot. Results:Compared with group C, the mortality rate of H9c2 cells was significantly increased, the expression and phosphorylation of Cx43 were decreased, and the expression and phosphorylation of ERK1/2 were increased in group HHR ( P<0.05), and no significant change was found in the mortality rate of H9c2 cells or expression and phosphorylation of Cx43 and ERK1/2 in group Co ( P>0.05). Compared with group Co, the mortality rate of H9c2 cells was significantly increased, and the expression and phosphorylation of Cx43 and ERK1/2 were decreased in group Co+ HHR ( P<0.05). Compared with group HHR, the mortality rate of H9c2 cells was significantly increased, and the expression and phosphorylation of Cx43 and ERK1/2 were decreased in group Co+ HHR ( P<0.05). Conclusions:RCFs can decrease the expression and activity of Cx43 in H9c2 cells during hypothermic hypoxia/reoxygenation, and the mechanism may be related to the down-regulation of ERK1/2 expression and inhibition of ERK1/2 activity.

5.
Arq. bras. cardiol ; 116(3): 415-422, Mar. 2021. graf
Article in English, Portuguese | LILACS | ID: biblio-1248864

ABSTRACT

Resumo Fundamento: É sabido que a resistência à insulina e a hiperglicemia são causas patológicas importantes no desenvolvimento de cardiomiopatia diabética (CMD). Entretanto, seus mecanismos moleculares precisos na patogênese da CMD ainda não estão claros. Objetivos: Estudos recentes revelam que os microRNAs (miRNAs) desempenham papéis essenciais na patogênese da CMD. Este projeto tem o objetivo de determinar os papéis de miR-34a e miR-125b na morte celular de cardiomiócitos causada por hiperglicemia. Métodos: Cardiomiócitos primários de ratos foram isolados e expostos a concentrações de glicose normais e altas. A viabilidade das células foi medida utilizando-se o ensaio MTT. As expressões de miR-34a e miR-125b foram detectadas por qRT-PCR. Alvos potenciais de miR-34a e miR-125b foram previstos pelo www.Targetscan.org, e validados a partir de tecidos cardíacos humanos. Um p<0,05 foi considerado significância estatística. Resultados: Demonstra-se neste estudo que o miR-34a e o miR-125b têm resposta celular reduzida no coração humano diabético. Além disso, os dados in vitro de cardiomiócitos primários de ratos demonstraram que o tratamento com glicose alta em curto prazo estimula a expressão de miR-34a e miR-125b. Demonstrou-se que, em condições de glicose alta, os cardiomiócitos de ratos apresentaram metabolismo de glicose intracelular, e a captação de glicose e a produção de lactato aumentaram significativamente. Foi identificado que as principais enzimas metabólicas da glicose, hexoquinase 2 (HK2) e lactato desidrogenase-A (LDHA) eram alvos diretos de miR-125b e miR-34a, respectivamente. A superexpressão de miR-125b e miR-34a poderia evitar a morte de celular de cardiomiócitos causada por hiperglicemia. Por fim, a recuperação de HK2 e LDHA em cardiomiócitos com superexpressão de miR-125b e miR-34a restaurou a sensibilidade de cardiomiócitos à hiperglicemia. Conclusões: Nossos resultados propõem um mecanismo molecular para proteção cardiovascular diabética mediada por microRNA e contribuirão para o desenvolvimento de estratégias de tratamento de disfunção cardiovascular associada a diabetes.


Abstract Background: It is well-known that insulin resistance and hyperglycemia are important pathological causes for the development of diabetic cardiomyopathy (DCM). However, its precise molecular mechanisms in the pathogenesis of DCM remain unclear. Objectives: Recent studies reveal that microRNAs (miRNA) play essential roles in the pathogenesis of DCM. This project aimed to determine the roles of miR-34a and miR-125b in hyperglycemia-induced cardiomyocyte cell death. Methods: Rat primary cardiomyocytes were isolated and exposed to normal and high concentrations of glucose. Cell viability was measured using MTT assay. Expressions of miR-34a and miR-125b were detected by qRT-PCR. Potential targets of miR-34a and miR-125b were predicted from www.Targetscan.org and validated from human heart tissues. A statistical significance of p<0.05 was considered. Results: The present study shows that miR-34a and miR-125b are downregulated in a human diabetic heart. Moreover, in vitro data from rat primary cardiomyocytes showed that short-term high glucose treatment stimulates miR-34a and miR-125b expressions. Under high glucose, it was found that rat cardiomyocytes displayed increased intracellular glucose metabolism, and glucose uptake and lactate production were significantly increased. It was also found that the key glucose metabolic enzymes, Hexokinase 2 (HK2) and Lactate dehydrogenase-A (LDHA), were direct targets of miR-125b and miR-34a, respectively. Overexpression of miR-125b and miR-34a could prevent hyperglycemia-induced cardiomyocyte cell death. Finally, the restoration of HK2 and LDHA in miR-125b and miR-34a overexpressed cardiomyocytes recovered the cardiomyocytes' sensitivity to hyperglycemia. Conclusion: Our results proposed a molecular mechanism for the microRNA-mediated diabetic cardiovascular protection and will contribute to developing treatment strategies for diabetes-associated cardiovascular dysfunction.


Subject(s)
Animals , Rats , MicroRNAs/genetics , Hyperglycemia , Cell Death , Myocytes, Cardiac , Glucose
7.
Chinese Journal of Anesthesiology ; (12): 1252-1255, 2021.
Article in Chinese | WPRIM | ID: wpr-911353

ABSTRACT

Objective:To evaluate the role of histone deacetylase 3 (HDAC3) in high glucose hypoxia/reoxygenation (H/R) injury to primary rat cardiomyocytes and the relationship with autophagy.Methods:The primary cardiomyocytes extracted from newborn Sprague-Dawley rats, aged about 1-3 days, were divided into 5 groups ( n=24 each) according to the random number table method: control group (C group, glucose concentration 5.5 mmol/L), H/R group, high glucose group (H group, glucose concentration 30 mmol/L), high glucose H/R group (HH/R group), and high glucose H/R + HDAC3 inhibitor RGFP966 group (HH/R+ RG group). Fifty percent glucose injection was used to prepare high-glucose medium (final concentration 30 mmol/L). Cells were cultured in a hypoxic environment (5% CO 2-0.9% O 2-94.1% N 2) for 6 h, followed by reoxygenation in a normoxic environment for 2 h to establish the cardiomyocyte H/R model in H/R group.RGFP966 at a final concentration of 10 μmol/L was added at 24 h before H/R in HH/R+ RG group.At 2 h of reoxygenation, the cell viability was measured using CCK-8 kit, the activity of lactic dehydrogenase (LDH) in the cell supernatant was determined using enzyme-linked immunosorbent assay, the level of autophagy was detected with a confocal microscope after cells were transfected with autophagy double-labeled adenovirus (mRFP-GFP-LC3), and the expression of HDAC3, p62, LC3 Ⅱ and LC3 Ⅰ was detected using Western blot.LC3Ⅱ/LC3Ⅰ ratio was calculated. Results:Compared with group C, the cell viability was significantly decreased, and the activity of LDH in supernatant was increased in H/R and H groups, the number of autophagosomes was significantly increased, the expression of HDAC3 in cardiomyocytes was up-regulated, the expression of p62 was down-regulated, and the LC3 Ⅱ/I ratio was increased in group H/R, and the number of autophagosomes was significantly decreased, the expression of HDAC3 and p62 in cardiomyocytes was up-regulated, and the LC3 Ⅱ/I ratio was decreased in group H ( P<0.05). Compared with group H/R, the cell viability was significantly decreased, the activity of LDH in supernatant was increased, the number of autophagosomes was decreased, the expression of HDAC3 and p62 in cardiomyocytes was up-regulated, and the LC3 Ⅱ/I ratio was decreased in group HH/R ( P<0.05). Compared with group H, the cell viability was significantly decreased, the activity of LDH in supernatant was increased, the number of autophagosomes was increased, the expression of HDAC3 and p62 in cardiomyocytes was up-regulated, and the LC3 Ⅱ/I ratio was increased in group HH/R ( P<0.05). Compared with group HH/R, the cell viability was significantly increased, the activity of LDH in supernatant was decreased, the number of autophagosomes was increased, the expression of HDAC3 and p62 in cardiomyocytes was down-regulated, and the LC3 Ⅱ/I ratio was increased in group HH/R+ RG ( P<0.05). Conclusion:Up-regulation of HDAC3 expression is involved in high glucose H/R injury to primary rat cardiomyocytes, which is related to decreasing the level of autophagy.

8.
Article in Chinese | WPRIM | ID: wpr-911316

ABSTRACT

Objective:To evaluate the effect of TBK1 overexpression on hypoxia-reoxygenation (H/R) injury in isolated mouse cardiomyocytes subjected to high glucose and the relationship with mitochondrial autophagy.Methods:Normally cultured log-phase HL-1 mouse cardiomyocytes were inoculated in a 6-well plate at a density of 1×10 6 cells/ml and were divided into 4 groups ( n=10 each) using a random number table method: control group (group C), high glucose group (group HG), high glucose and H/R group (group HG+ H/R), and TBK1 overexpression group (group TBK1). The cells were incubated in culture medium with 1% fetal bovine serum and 1% double antibody for 24 h when the cell density reached 50%.When the cell density reached 80%, pcDNA3.1 (+ ) was used as a vector to achieve TBK1 overexpression.The cells were cultured with high glucose medium (33 mmol/L) for 24 h, exposed to 94% N 2+ 5% CO 2+ 1% O 2 for 24 h in an incubator at 37℃ followed by 12 h reoxygenation in an incubator containing 5% CO 2 at 37°C to establish the model of H/R injury to cardiomyocytes subjected to high glucose.After reoxygenation, CCK-8 assay was used to detect cell viability, the activity of lactic dehydrogenase (LDH) in supernatant was detected using LDH kit, mitochondrial contents were determined using Mito-Tracter green fluorescent probe, and the expression of TBK1 and mitophagy-related proteins PINK1, Parkin, LC3B and P62 was detected by Western blot. Results:Compared with group C, the cell viability was significantly decreased, the activity of LDH in supernatant was increased, mitochondrial contents were decreased, the expression of TBK1, PINK1, Parkin and LC3B was down-regulated, and the expression of P62 was up-regulated in HG group and HG+ H/R group ( P<0.05). Compared with group HG, the cell viability was significantly decreased, the activity of LDH in supernatant was increased, mitochondrial contents were decreased, the expression of TBK1, PINK1, Parkin and LC3B was down-regulated, and the expression of P62 was up-regulated in group HG+ H/R ( P<0.05). Compared with group HG+ H/R, the the cell viability was significantly increased, the activity of LDH in supernatant was decreased, mitochondrial contents were increased, the expression of TBK1, PINK1, Parkin and LC3B was up-regulated, and the expression of P62 was down-regulated in group TBK1 ( P<0.05). Conclusion:The mechanism by which TBK1 overexpression reduces the H/R injury is related to restoring mitophagy in isolated mouse cardiomyocytes subjected to high glucose.

9.
Article in Chinese | WPRIM | ID: wpr-911294

ABSTRACT

Objective:To evaluate the relationship between phosphorylation of glycogen synthase kinase-3β (GSK-3β) and high glucose-caused abolition of cardioprotection induced by sevoflurane postconditioning.Methods:H9c2 cells were incubated in normal glucose (5.56 mmol/L) DMEM culture medium or high glucose (33 mmol/L) DMEM culture medium.The cells were divided into 8 groups ( n=24 each) using a random number table method: normal control group (group NC), normal glucose-cultured hypoxia/reoxygenation (H/R) group (group NH/R), normal glucose-cultured sevoflurane postconditioning group (group NS), normal glucose-cultured GSK-3β inhibitor SB216763 group (group NSB), high glucose-cultured group (group HC), high glucose-cultured H/R group (group HH/R), high glucose-cultured sevoflurane postconditioning group (group HS) and high glucose-cultured GSK-3β inhibitor SB216763 group (group HSB). The model of cardiomyocyte H/R was established by subjecting cardiomyocytes to 3 h of hypoxia followed by reoxygenation.Immediately after onset of reoxygenation, cardiomyocytes were exposed to 2.4% sevoflurane for 30 min in Ns and HS groups.Before the beginning of reoxygenation, GSK-3β inhibitor SB216763 was added to the culture medium with the final concentration of 10 μmol/L in NSB and HSB groups.At 3 h of reoxygenation, the apoptosis rate was determined by Anexin V-PI flow cytometry, the expression of GSK-3β and phosphorylated GSK-3β (p-GSK-3β) was detected by Western blot, superoxide dismutase (SOD) activity was measured using xanthineoxidase method, and lactic dehydrogenase (LDH) activity and malondialdehyde (MDA) content were determined by colorimetric assay. Results:Compared with group NC, apoptosis rate, LDH activity and MDA content were significantly increased, and SOD activity was decreased in group NH/R and group HC, expression of GSK-3β was up-regulated, and expression of p-GSK-3β was down-regulated in group NH/R, expression of p-GSK-3β was up-regulated in group NS, and expression of p-GSK-3β was down-regulated in group HC ( P<0.05). Compared with group NH/R, apoptosis rate, LDH activity and MDA content were significantly decreased, and SOD activity was increased in group NS and NSB groups, and expression of GSK-3β was down-regulated, and expression of p-GSK-3β was up-regulated in group NS ( P<0.05). Compared with group HC, apoptosis rate, LDH activity and MDA content were significantly increased, SOD activity was decreased, expression of GSK-3β was up-regulated, and expression of p-GSK-3β was down-regulated in group HH/R ( P<0.05). Compared with group HH/R, apoptosis rate, LDH activity and MDA content were significantly decreased, and SOD activity was increased in group HSB ( P<0.05). Conclusion:The mechanism by which high glucose abolishes cardioprotection induced by sevoflurane postconditioning is related to inhibiting phosphorylation of GSK-3β.

10.
Chinese Journal of Anesthesiology ; (12): 1523-1527, 2021.
Article in Chinese | WPRIM | ID: wpr-933287

ABSTRACT

Objective:To evaluate the effects of different density rat fibroblasts on the expression of conjunctin 43 (Cx43) in cardiomyocytes and cell viability.Methods:Cardiomyocytes and fibroblasts were co-cultured using Transwell, cardiomyocytes were inoculated into the lower chamber of Transwell and fibroblasts into the upper chamber of Transwell.The cells were divided into 3 groups ( n=12 each) by a random number table method: fibroblast density 0.5×10 5 cells/ml group (group C 0.5), fibroblast density 1×10 5 cells/ml group (group C 1), and fibroblast density 2×10 5 cells/ml group (group C 2), with the density of cardiomyocytes 1×10 5 cells/ml in three groups.Cardiomyocytes and fibroblasts were co-cultured for 20 h in three groups.Cardiomyocytes were collected after co-culture for determination of cell viability (by CCK8 method), apoptosis rate (by flow cytometry), and expression of Cx43 mRNA (by quantitative real-time polymerase chain reaction) and expression of Cx43 and phosphorylated Cx43 (p-Cx43) (by Western blot). Results:There was no significant difference in the apoptosis rate of cardiomyocytes among the three groups ( P>0.05). Compared with group C 0.5, the expression of Cx43 protein and mRNA and p-Cx43 was significantly up-regulated in group C 1, the cardiomyocyte viability was significantly increased, and the expression of Cx43 protein and mRNA and p-Cx43 was up-regulated in group C 2 ( P<0.05). Compared with group C 1, the cardiomyocyte viability was significantly increased, and the expression of Cx43 protein and mRNA and p-Cx43 was up-regulated in group C 2 ( P<0.05). Conclusion:Rat fibroblasts up-regulate the expression of Cx43 and enhance the activity of Cx43 in cardiomyocytes and enhance cell viability in a density-dependent manner in a certain range.

11.
Rev. bras. cir. cardiovasc ; 35(4): 484-489, July-Aug. 2020. tab, graf
Article in English | LILACS, SES-SP | ID: biblio-1137304

ABSTRACT

Abstract Objective: To investigate the effect of Shenfu (SF) injection on donor heart preservation. Methods: Twelve pigs were randomly divided into SF group (n=6) and control group (n=6). After eight hours of perfusion, the differences in hemoglobin, the expression of Bcl-2 and BAX, and changes in the myocardial ultrastructure were compared to illustrate the effects of SF injection in heart preservation. Results: The differences in free hemoglobin between the SF group and the control group were statistically significant (P=0.001), and there was significant interaction of groups with times (P=0.019), but the perfusion time may not be associated with the hemoglobin concentration (P=0.616). According to Western blotting analysis, the expression of Bcl-2 was higher in the SF group than in the control group, while the expression of BAX was not different between the two groups. As to ultrastructural changes, both groups exhibited mitochondrial swelling and myofilament lysis, but the degree of damage in the SF group was smaller. Conclusion: Our study suggests that the application of SF injection for heart preservation may protect against cardiomyocytes and erythrocytes apoptosis, and Bcl-2 protein may play a role in these physiological processes.


Subject(s)
Animals , Male , Drugs, Chinese Herbal , Heart Transplantation , Swine , Swine, Miniature , Tissue Donors
12.
Chinese Journal of Cardiology ; (12): 1060-1069, 2020.
Article in Chinese | WPRIM | ID: wpr-941220

ABSTRACT

Objective: To explore the role and related mechanism of mammalian sterile 20-like kinase 1(Mst-1)in regulating hypoxia reoxygenation (HR) induced myocardial cell autophagy and apoptosis. Methods: Enzyme digestion method combined with differential adherent method was used to culture neonatal mouse myocardial cells. HR model was established by hypoxia for 24 hours and reoxygenation for 6 hours. The experimental groups including control group (normal cultured cardiomyocytes), Mst-1 empty virus group (cardiomyocytes transfected with recombinant lentiviral empty vector for 48 hours), Mst-1 knockdown group (recombinant lentivirus carrying Mst-1small interfering RNA (siRNA) was transfected into cardiomyocytes for 48 hours), Mst-1 overexpression group (cardiomyocytes were transfected with recombinant lentivirus carrying Mst-1 gene for 48 hours), HR group (cardiomyocytes exposed to HR), Mst-1 knockdown+HR group (HR model of cardiomyocyte was established 48 hours after transfection with recombinant lentivirus carrying Mst-1siRNA) and Mst-1 overexpression+HR group (HR model of cardiomyocyte was established 48 hours after transfection with recombinant lentivirus carrying Mst-1 gene). Real-time fluorescence quantitative RCR (qPCR) and Western blot were used to detect the relative expression of Mst-1 mRNA and protein in the cells, immunofluorescence staining was used to detect cardiomyocyte troponin T (cTnT), and autophagosomes and autophagy enzyme changes. TUNEL method was used to detect myocardial cell apoptosis, Western blot was adopted to detect autophagy-related protein microtubule-related protein 1 light chain 3 (LC3) Ⅱ/LC3 Ⅰ, P62 and apoptosis-related protein cleaved-caspase 9, pro-caspase 9, cleaved-caspase-3, pro-caspase-3, and myeloid leukemia 1 (MCL-1) expression. MCL-1 inhibitor A1210477 was used to validate the signaling pathway of Mst-1 on regulating cardiomyocyte apoptosis and autophagy. Results: Immunofluorescence detection revealed that the cultured cells expressed cardiomyocyte-specific marker cTnT. The expression of Mst-1 in cardiomyocytes increased in HR model. Lentiviral transfection could effectively inhibit or overexpress Mst-1 in treated cells. The levels of autophagosomes and autophagolysosomes in cardiomyocytes undergoing HR and in Mst-1 overexpression+HR group were lower than those of control group, while autophagosomes and autophagolysosomes in cardiomyocytes of Mst-1 knockdown+HR group was significantly higher than in the HR group (all P<0.05). The TUNEL results showed that the proportion of TUNEL positive cells was significantly increased in the HR group and Mst-1 overexpression+HR group than in the control group, while the proportion of TUNEL positive cells was significantly decreased in the Mst-1 knockdown group+HR group as compared to the HR group (all P<0.05). Western blot results showed that the LC3 Ⅱ/LC3 Ⅰ levels were significantly lower, while the expression levels of P62, cleaved-caspase-9 and cleaved-caspase-3 were significantly higher in the HR group and Mst-1 overexpression+HR group than in control group (all P<0.05). The LC3 Ⅱ/LC3 Ⅰ value was significantly higher, and the expression levels of P62, cleaved-caspase-9 and cleaved-caspase-3 were significantly lower in the Mst-1 knockdown+HR group than in the HR group (P both<0.05). The expression level of P-MCL-1 protein was significantly lower in cardiomyocytes of HR and Mst-1 overexpression+HR group than in control group, and the expression level of P-MCL-1 protein was higher in Mst-1 knockdown+HR group than in HR group (P both<0.05). The recovery experiment showed that inhibiting MCL-1 in cells can block the regulatory effect of Mst-1 siRNA on cell autophagy and apoptosis. Conclusion: Inhibiting Mst-1 expression in cardiomyocytes can promote the autophagy of cardiomyocytes induced by hypoxic reoxygenation and reduce the apoptosis of cardiomyocytes via activating McL-1.


Subject(s)
Animals , Apoptosis , Autophagy , Hypoxia , Mice , Myocytes, Cardiac , Signal Transduction
13.
Chinese Journal of Cardiology ; (12): 954-961, 2020.
Article in Chinese | WPRIM | ID: wpr-941206

ABSTRACT

Objective: To explore the effects of 3-phosphate dependent protein kinase 1-protein kinase B (PDK1-Akt) signaling pathway on the transcription, expression and function of cardiac hyperpolarized activated cyclic nucleotide gated 4 (HCN4) ion channels. Methods: Atrial myocytes were obtained from healthy male wild-type C57 mice and heart-specific PDK1 knockout mice (PDK1-KO) by enzymolysis. Then the atrial myocytes were divided into blank control group and PDK1-KO group. In further studies, the isolated atrial myocytes were cultured and further divided into drug control group (treated with dimethyl sulfoxide (DMSO)) and PDK1 knockdown group (treated with 1 μg/ml PDK1 short hairpin RNA (shRNA) interference plasmid), SC79 group (treated with 8 μmol/ml SC79), GSK2334470 group (treated with 10 nmol/L GSK2334470) and PDK1 knockdown+SC79 group (8 μmol/ml SC79 and 1 μg/ml PDK1 shRNA interference plasmid). Real time quantitative PCR (qRT-PCR) was used to detect the mRNA expression levels of PDK1 and HCN4, Western blot was used to detect the protein expression levels of PDK1, Akt and HCN4, the whole cell patch clamp was used to detecte the current density of HCN, and immunofluorescence was used to detecte the expression of HCN4 protein on atrial cells. Results: (1) the expression levels of HCN4 mRNA (1.46±0.03 vs. 0.99±0.01, P<0.001) and protein (1.14±0.02 vs. 1.00±0.06, P=0.017) in PDK1-KO group were higher than those in blank control group. The HCN current density in PDK1-KO group was higher than that in blank control group((-17.47±2.00) pA/pF vs. (-12.15±2.25) pA/pF, P=0.038). (2) The functions of PDK1 shRNA and specific Akt agonist SC79 were verified by comparing the PDK1 knockdown group and SC79 group with the drug control group. The results showed that the expression levels of PDK1 mRNA and protein in PDK1 knockdown group were lower than those in drug control group, and the expression level of phosphorylated Akt (Thr 308) protein in SC79 group was higher than that in drug control group. (3) The expression levels of HCN4 mRNA (3.61±0.46 vs. 1.00±0.08, P<0.001) and protein (2.33±0.11 vs. 1.00±0.05, P<0.001) in GSK2334470 group were higher than those in drug control group. (4) To reduce the effect of drug-miss target, the cultured atrial myocytes were transfected with shRNA plasmid of PDK1 and intervened with SC79. The results showed that the expression of HCN4 mRNA in PDK1 knockdown group was higher than that in the drug control group (1.76±0.11 vs. 1.00±0.06, P<0.001), and PDK1 knockdown+SC79 group (1.76±0.11 vs. 1.33±0.07, P=0.003). In PDK1 knockdown+SC79 group, the mRNA expression level was also higher than that in the drug control group (1.33±0.07 vs. 1.00±0.06, P<0.001). The expression level of HCN4 protein in PDK1 knockdown group was higher than that in drug control group (1.15±0.04 vs. 1.00±0.05, P=0.003). As for the The expression level of HCN4 protein, there was no significantly statistical difference between the PDK1 knockdown+SC79 group and the drug control group (P>0.05), but PDK1 knockdown+SC79 group was lower than PDK1 knockdown group (0.95±0.01 vs. 1.15±0.04, P<0.001). In patch clamp experiments, the results showed that the HCN current density was (-13.27±1.28) pA/pF in the drug control group, (-18.76±2.03) pA/pF in the PDK1 knockdown group, (-13.50±2.58) pA/pF in the PDK1 knockdown+SC79 group; the HCN current density of PDK1 knockdown group was higher than that of drug control group (P<0.001), but there was no significant difference between PDK1 knockdown+SC79 group and drug control group (P>0.05). (5) The results of immunofluorescence showed that the brightness of green fluorescence of PDK1 knockdown group was higher than that of drug control group, indicating that the expression of HCN4 localized on cell membrane was increased. However, the green fluorescence of PDK1 knockdown+SC79 group was lighter than that of PDK1 knockdown group, suggesting that the expression of HCN4 in PDK1-knockdown cell membrane decreased after further activating Akt. Conclusion: PDK1-Akt signaling pathway is involved in the regulation of HCN4 ion channel transcription, expression and function.


Subject(s)
Animals , Cyclic Nucleotide-Gated Cation Channels , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Male , Mice , Myocytes, Cardiac/metabolism , Potassium Channels/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
14.
Chinese Journal of Cardiology ; (12): 329-335, 2020.
Article in Chinese | WPRIM | ID: wpr-941113

ABSTRACT

Objective: To investigate if microRNA (miR) -23a knockdown could attenuate angiotensin Ⅱ(AngⅡ) induced cardiac hypertrophy by activating phosphatase and tensin homolog deleted on chromosome ten(PTEN) and AMP-activated protein kinase(AMPK) pathway. Methods: Rat H9c2 cells were cultured in DMEM high glucose medium and put in 5% CO(2) incubator at 37 ℃(normal group). After 48 hours of culture, H9c2 cells were stimulated with 10 nmol/L AngⅡ to establish cell hypertrophy model (AngⅡgroup). The H9c2 cells were inoculated in a 6-well cell culture plate and cultured in an incubator at 37 ℃. When the confluence degree of cell growth was about 70%, the cells were transfected with different reagents, and 24 hours after transfection, 10 nmol/L AngⅡ was used to interfere with the cells. The H9c2 cells were divided into different groups according to the reagents, namely AngⅡ+anti-miR group(transfected with miR-23a inhibitor), Ang Ⅱ+NC group(transfected with miR-23a inhibitor negative control), Ang Ⅱ+anti-miR+si-PTEN group(cotransfected with miR-23a inhibitor and PTEN small interference RNA(siRNA)), and AngⅡ+anti-miR+si-NC group(cotransfected with miR-23a inhibitor and PTEN siRNA negative control). The surface area of single cell was measured by Image J software.The mRNA expression levels of α-actin 1 (ACTA1) and β-myosin heavy chain (β-MHC) and miR-23a were detected by quantitative real-time PCR(qRT-PCR). The expression levels of PTEN and AMPK signal pathway related proteins were detected by Western blot. In order to verify whether miR-23a targets PTEN gene, double luciferase reporter gene experiment was performed. The luciferase reporter gene vector recombinant plasmids of wild type pGL-WT-PTEN and mutant pGL-MUT-PTEN were constructed and prepared after normal sequencing. H9c2 cells was inoculated into 24-well cell culture plate and cultured overnight in 37 ℃ incubator. The cells were co-transfected with miR-23a mimic or miR-23a mimic negative control and wild type or mutant reporter gene recombinant plasmid. Forty-eight hours after transfection, firefly luciferase activity and sea kidney luciferase activity were measured, and the ratio of them was recorded as relative luciferase activity. Results: Compared with the normal group, the cell surface area, the mRNA expression levels of ACTA1, β-MHC and miR-23a were significantly higher, while the protein expression levels of PTEN and p-AMPK were significantly lower in the Ang Ⅱ group(all P<0.05). The results of double luciferase reporter gene assay showed that the relative luciferase activity of cells co-transfected with miR-23a mimic and wild-type reporter gene recombinant plasmid was lower than that of miR-23a mimic negative control (P<0.05), and PTEN served as the target gene of miR-23a. In AngⅡ+anti-miR group the mRNA expression levels of miR-23a, ACTA1 and β-MHC were lower, and the cell surface area was smaller, while the protein expression levels of PTEN and p-AMPK were higher than that in AngⅡ group and AngⅡ+NC group(all P<0.05). Compared with AngⅡ+anti-miR group, the cell surface area was bigger, the expression of ACTA1 and β-MHC mRNA was up-regulated, and the protein expression levels of PTEN and p-AMPK were down-regulated in Ang Ⅱ+anti-miR+si-PTEN group(all P<0.05). Conclusion: Inhibition of miR-23a can attenuate Ang Ⅱ-induced hypertrophy in H9c2 cells through targeting PTEN and activating AMPK signaling pathway.


Subject(s)
AMP-Activated Protein Kinases , Angiotensin II , Animals , Cardiomegaly , Cell Line , Cell Proliferation , MicroRNAs/genetics , PTEN Phosphohydrolase , Rats , Signal Transduction
15.
Rev. bras. cir. cardiovasc ; 34(6): 711-722, Nov.-Dec. 2019. tab, graf
Article in English | LILACS | ID: biblio-1057503

ABSTRACT

Abstract Objective: To determine the role of the dishevelled binding antagonist of beta catenin 1 (DACT1) in the cytoskeletal arrangement of cardiomyocytes in atrial fibrillation (AF). Methods: The DACT1 expression and its associations with the degree of fibrosis and β-catenin in valvular disease patients were analyzed by immunohistochemistry and Masson's staining. DACT1 was overexpressed in the atrial myocyte cell line (HL-1) and the cardiac cell line (H9C2) by adenoviral vectors. Alterations in the fibrous actin (F-actin) content and organization and the expression of β-catenin were detected by flow cytometry, immunofluorescence, and Western blotting. Additionally, the association of DACT1 with gap junctions connexin 43 (Cx43) was detected by immunohistochemistry, immunofluorescence, and Western blotting. Results: Decreased cytoplasmic DACT1 expression in the myocardium was associated with AF (P=0.037) and a high degree of fibrosis (weak vs. strong, P=0.028; weak vs. very strong, P=0.029). A positive association was observed between DACT1 and β-catenin expression in clinical samples (P=0.028, Spearman's rho=0.408). Furthermore, overexpression of DACT1 in HL-1 and H9C2 cells induced an increase in β-catenin and subsequent partial colocalization of DACT1 and β-catenin. In addition, F-actin content and organization were enhanced. Interestingly, DACT1 was positively correlated with the Cx43 expression in clinical samples (P=0.048, Spearman's rho=0.370) and changed the Cx43 distribution in cardiac cell lines. Conclusion: DACT1 proved to be a novel AF-related gene by regulating Cx43 via cytoskeletal organization induced by β-catenin accumulation in cardiomyocytes. DACT1 could thus serve as a potential therapeutic marker for AF.


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Aged , Young Adult , Atrial Fibrillation/metabolism , Cytoskeleton/metabolism , Nuclear Proteins/metabolism , Connexin 43/metabolism , Myocytes, Cardiac/cytology , Adaptor Proteins, Signal Transducing/metabolism , Atrial Fibrillation/physiopathology , Atrial Fibrillation/genetics , Immunohistochemistry , Nuclear Proteins/genetics , Cell Movement , Connexin 43/genetics , Adaptor Proteins, Signal Transducing/genetics
16.
Chinese Journal of Cardiology ; (12): 471-478, 2019.
Article in Chinese | WPRIM | ID: wpr-810669

ABSTRACT

Objective@#To investigate the effect of NACHT-LRR-PYD- containing proteins 3 (NLRP3) mediated pyroptosis in myocardial cells undergoing hypoxia/deoxygenation (H/R) injury.@*Methods@#In order to observe whether H/R-treatment could cause pyroptosis, H9c2 cells were divided into 2 groups randomly using the lottery method: control group(without H/R-treatment) and H/R group (in which the H9c2 cells were underwent H/R-treatment). In order to clarify the role of pyroptosis in H/R-injury, H9c2 cells were divided into 4 groups randomly using the lottery method: control group(in which the H9c2 cells were cultivated with normal medium); YVAD group(in which the H9c2 cells were pretreated with z-Val-Ala-Asp(Ome)-fluoromethylketone (Z-YVAD-FMK) 20 μm for 4 hours, then replaced with normal medium); H/R group(H9c2 cells underwent H/R-treatment); YVAD+H/R group (in which the H9c2 cells were pretreated with 20 μm Z-YVAD-FMK for 4 hours before H/R-treatment). To determine whether H/R-induced cell pyroptosis is associated with NLRP3, H9c2 cells were divided into 4 groups randomly using the lottery method: control group (in which cells were transfected with a control nonspecific siRNA); si-NLRP3 group (in which cells were transfected with NLRP3-targeting siRNA); H/R group(in which cells were transfected with a control nonspecific siRNA before H/R-treatment); si-NLRP3+H/R group(in which the H9c2 cells were transfected with NLRP3-targeting siRNA before H/R-treatment). Pore formation on cell membrane was detected by propidium iodide (PI) staining. Cell viability was detected by CCK8 reagent. The protein expression of Caspase-1, interleukin-1β (IL-1β) and NLRP3 was detected by Western blot.@*Results@#(1) The positive rate of PI staining ((26.46±5.15)% vs. (1.69±0.73)%,P<0.01), expression of NLRP3 (0.57±0.16 vs. 0.23±0.06,P<0.01), expression of Caspase-1 (1.07±0.13 vs. 0.37±0.08,P<0.01), and expression of IL-1β (0.38±0.08 vs. 0.16±0.05,P<0.01) were significantly higher in H/R group than in control group. (2)The cell vitality was significantly higher in YVAD+H/R group than in H/R group ((87.31±9.05)% vs. (73.30±7.19)%, P<0.05).The positive rate of PI staining was significantly decreased in YVAD+H/R group than in H/R group ((18.12±4.36)% vs. (26.45±4.60)%, P<0.05). The expression of Caspase-1 (0.72±0.12 vs. 1.07±0.15, P<0.05) and IL-1β(0.29±0.07 vs. 0.39±0.06, P<0.05) were significantly lower in YVAD+H/R group than in H/R group. (3) The cell vitality was significantly increased in si-NLRP3+H/R group than in H/R group ((85.46±7.71)% vs. (72.41±5.53)%, P<0.05). The positive rate of PI staining was significantly lower in si-NLRP3+H/R group than in H/R group ((18.22±4.20)% vs. (26.73±3.26)%, P<0.05). The expression of Caspase-1(0.87±0.07 vs. 1.15±0.15, P<0.05) and IL-1β(0.41±0.07 vs. 0.58±0.10, P<0.05) were significantly decreased in si-NLRP3+H/R group than in H/R group.@*Conclusion@#NLRP3 mediated pyroptosis is involved in H/R injury of myocardial cells.

17.
Chinese Journal of Burns ; (6): 186-192, 2019.
Article in Chinese | WPRIM | ID: wpr-804886

ABSTRACT

Objective@#To explore the effects of transient receptor potential vanilloid 1 (TRPV1) on autophagy in early hypoxic mouse cardiomyocytes and the mechanism in vitro.@*Methods@#The hearts of 120 C57BL/6 mice aged 1-2 days, no matter male or female, were isolated, and then primary cardiomyocytes were cultured and used for the following experiments, the random number table was used for grouping. (1) The cells were divided into normoxia group and hypoxia 3, 6, and 9 h groups, with one well in each group. The cells in normoxia group were routinely cultured (the same below), the cells in hypoxia 3, 6, and 9 h groups were treated with fetal bovine serum-free and glucose-free Dulbecco′ s modified Eagle medium under low oxygen condition in a volume fraction of 1% oxygen, 5% carbon dioxide, and 94% nitrogen for 3, 6, and 9 h, respectively. The protein expressions of microtubule-associated protein 1 light chain 3 (LC3), Beclin-1, TRPV1 were determined with Western botting. (2) The cells were divided into normoxia group and hypoxia group, with two coverslips in each group. The cells in hypoxia group were treated with hypoxia for 6 h as above. The positive expression of TRPV1 was detected by immunofluorescence assay. (3) The cells were divided into 4 groups, with one well in each group. The cells in simple hypoxia group were treated with hypoxia for 6 h as above, and the cells in hypoxia+ 0.1 μmol/L capsaicin group, hypoxia+ 1.0 μmol/L capsaicin group, and hypoxia+ 10.0 μmol/L capsaicin group were respectively treated with 0.1, 1.0, 10.0 μmol/L capsaicin for 30 min before hypoxia for 6 h. The protein expressions of LC3, Beclin-1, and TRPV1 were detected by Western blotting. (4) The cells were divided into 5 groups, with 5 wells in each group. The cells in hypoxia group were treated with hypoxia for 6 h as above, the cells in hypoxia+ chloroquine group, hypoxia+ capsaicin group, and hypoxia+ capsaicin+ chloroquine group were treated with hypoxia for 6 h after being cultured with 50 μmol/L chloroquine, 10.0 μmol/L capsaicin, and 50 μmol/L chloroquine+ 10.0 μmol/L capsaicin for 30 min, respectively. Viability of cells was detected by cell counting kit 8 assay. (5) The cells were divided into simple hypoxia group and hypoxia+ 10.0 μmol/L capsaicin group, with one well in each group. The cells in hypoxia group were treated with hypoxia for 6 h as above, the cells in hypoxia+ 10.0 μmol/L capsaicin group were treated with 10.0 μmol/L capsaicin for 30 minutes and then with hypoxia for 6 h. The protein expressions of lysosomal associated membrane protein 1 (LAMP-1) and LAMP-2 were detected by Western blotting. Each experiment was repeated for 3 or 5 times. Data were processed with one-way analysis of variance, least significant difference t test, and Bonferroni correction.@*Results@#(1) Compared with those of normoxia group, the protein expressions of LC3, Beclin-1, and TRPV1 were significantly increased in cardiomyocytes of hypoxia 3, 6, and 9 h groups (t3 h=4.891, 5.890, 4.928; t6 h=9.790, 6.750, 10.590; t9 h=6.948, 6.764, 5.049, P<0.05 or P<0.01), which of hypoxia 6 h group were the highest (1.08±0.05, 1.12±0.10, 0.953±0.071, respectively). (2) The density of TRPV1 in cell membrane and inside the cardiomyocytes in hypoxia group was significantly increased with lump-like distribution, and the expression of TRPV1 was higher than that in normoxia group. (3) Compared with those of simple hypoxia group, the protein expression of Beclin-1 in cardiomyocytes of hypoxia+ 0.1 μmol/L capsaicin group was increased (t=10.488, P<0.01), while the protein expressions of LC3 and TRPV1 were increased without statistically significant differences (t=4.372, 3.026, P>0.05); the protein expressions of LC3, TRPV1, and Beclin-1 in cardiomyocytes of hypoxia+ 1.0 μmol/L capsaicin group and hypoxia+ 10.0 μmol/L capsaicin group were significantly increased (t=15.505, 5.773, 13.430; 20.915, 8.054, 16.384; P<0.05 or P<0.01), which of hypoxia+ 10.0 μmol/L capsaicin group were the highest (2.33±0.09, 1.34±0.07, 1.246±0.053, respectively). (4) Compared with 0.585±0.045 in normoxia group, the cardiomyocyte viability in hypoxia group was significantly decreased (0.471±0.037, t=4.365, P<0.05). Compared with that in hypoxia group, the cardiomyocyte viability in hypoxia+ chloroquine group was further decreased (0.350±0.023, t=6.216, P<0.01), while 0.564±0.047 in hypoxia+ capsaicin group was significantly increased (t=3.489, P<0.05). Compared with that in hypoxia+ chloroquine group, the cardiomyocyte viability in hypoxia+ capsaicin+ chloroquine group did not significantly change (0.364±0.050, t=0.545, P>0.05). (5) Compared with 0.99±0.04 and 0.54±0.04 in simple hypoxia group, the protein expressions of LAMP-1 and LAMP-2 in hypoxia+ 10.0 μmol/L capsaicin group were significantly increased (1.49±0.06, 0.81±0.05, t=12.550, 7.442, P<0.01).@*Conclusions@#TRPV1 can further promote the expression of autophagy-related proteins in hypoxic cardiomyocytes through autophagy-lysosomal pathway, enhance autophagy activity, and improve autophagic flow for alleviating early hypoxic cardiomyocyte injury.

18.
Chinese Journal of Burns ; (6): 169-178, 2019.
Article in Chinese | WPRIM | ID: wpr-804884

ABSTRACT

Objective@#To investigate the effect of human antigen R on lysosomal acidification during autophagy in mouse cardiomyocytes cultured in vitro.@*Methods@#The hearts of 20 C57BL/6 mice aged 1-2 days no matter male or female were isolated to culture primary cardiomyocytes which were used in the following experiments. (1) The cells were divided into 5 groups according to the random number table (the same grouping method below), i. e., normal control group and sugar-free serum-free 0.5, 1.0, 3.0, and 6.0 h groups. The cells in normal control group were routinely cultured for 54.0 h with Dulbecco′s modified Eagle medium/nutrient mixture F12 (DMEM/F12) medium (the same regular culture condition below), and the cells in sugar-free serum-free 0.5, 1.0, 3.0, and 6.0 h groups were firstly regularly cultured for 53.5, 53.0, 51.0, 48.0 h and then cultured with replaced sugar-free serum-free medium for 0.5, 1.0, 3.0, and 6.0 h, respectively. The protein expressions of microtubule-associated protein 1 light chain 3 Ⅱ (LC3Ⅱ), autophagy-related protein 5, and adenosine triphosphatase V1 region E1 subunit (ATP6V1E1) were detected by Western blotting. (2) The cells were divided into normal control group and sugar-free serum-free 3.0 h group. The cells in corresponding groups were treated the same as those in experiment (1), and the cell lysosomal acidification level was observed and detected under a laser scanning confocal microscope. (3) Two batches of cells were grouped and treated the same as those in experiment (1). The protein expression of human antigen R in the whole protein of cells of one batch and its protein expression in the cytoplasm and nucleus protein of cells of the other batch were detected by Western blotting. (4) The cells were divided into normal control group, simple control small interfering RNA (siRNA) group, simple human antigen R-siRNA1 (HuR-siRNA1) group, simple HuR-siRNA2 group, sugar-free serum-free 3.0 h group, sugar-free serum-free+ control siRNA group, sugar-free serum-free+ HuR-siRNA1 group, and sugar-free serum-free+ HuR-siRNA2 group. After 48 hours of regular culture, the cells in simple control siRNA group and sugar-free serum-free+ control siRNA group were transfected with negative control siRNA for 6 h, the cells in simple HuR-siRNA1 group and sugar-free serum-free+ HuR-siRNA1 group were transfected with HuR-siRNA1 for 6 h, and the cells in simple HuR-siRNA2 group and sugar-free serum-free+ HuR-siRNA2 group were transfected with HuR-siRNA2 for 6 h. Hereafter, the cells in these 8 groups were continuously cultured for 48 h with regular conditon, and then the cells in normal control group and each simple siRNA-treated group were replaced with DMEM/F12 medium, the cells in the other groups were replaced with sugar-free serum-free medium, and they were cultured for 3 h. The protein expression of human antigen R in the whole protein of cells was detected by Western blotting. (5) Two batches of cells were divided into sugar-free serum-free+ control siRNA group and sugar-free serum-free+ HuR-siRNA1 group, and the cells in corresponding groups were treated the same as those in experiment (4). The distribution and expression of human antigen R in the cells of one batch were observed and detected by immunofluorescence method, and the lysosomal acidification level in the cells of the other batch was observed and detected under a laser scanning confocal microscope. (6) Three batches of cells were divided into sugar-free serum-free 3.0 h group, sugar-free serum-free+ control siRNA group, sugar-free serum-free+ HuR-siRNA1 group, and sugar-free serum-free+ HuR-siRNA2 group, and the cells in corresponding groups were treated the same as those in experiment (4). The protein expressions of cathepsin D in the whole protein of cells of one batch, human antigen R in the cytoplasm protein of cells of one batch, and ATP6V1E1 in the whole protein of cells of the other batch were detected by Western blotting. (7) The cells were divided into normal control group, sugar-free serum-free 3.0 h group, sugar-free serum-free+ control siRNA group, and sugar-free serum-free+ HuR-siRNA1 group, and the cells in corresponding groups were treated the same as those in experiment (4). The mRNA expression of ATP6V1E1 in cells was detected by real-time fluorescent quantitative reverse transcription polymerase chain reaction. The sample number of each experiment was 3. Data were processed with independent data t test, one-way analysis of variance, least significant difference t test, and Bonferroni correction.@*Results@#(1) Compared with those of normal control group, the protein expressions of LC3Ⅱ and ATP6V1E1 in the whole protein of cells of sugar-free serum-free 1.0, 3.0, and 6.0 h groups were significantly increased (t=12.16, 4.05, 4.82, 11.64, 3.29, 8.37, P<0.05 or P<0.01). Compared with that of normal control group, the protein expression of autophagy-related protein 5 in the whole protein of cells of sugar-free serum-free 0.5, 1.0, 3.0, and 6.0 h groups was significantly increased (t=6.88, 10.56, 5.76, 9.91, P<0.05 or P<0.01). (2) Compared with 1.03±0.08 of normal control group, the lysosomal acidification level in the cells of sugar-free serum-free 3.0 group (2.92±0.30) was significantly increased (t=6.01, P<0.01). (3) There was no statistically significant difference in the overall comparison of protein expression of human antigen R in the whole protein of cells among the 5 groups (F=1.09, P>0.05). Compared with that of normal control group, the protein expression of human antigen R in the cytoplasm protein of cells was significantly increased in sugar-free serum-free 1.0, 3.0, and 6.0 h groups (t=43.05, 11.07, 5.39, P<0.05 or P<0.01), while the protein expression of human antigen R in the nucleus protein of cells was significantly decreased in sugar-free serum-free 3.0 and 6.0 h groups (t=11.18, 12.71, P<0.01). (4) Compared with that of simple control siRNA group, the protein expression of human antigen R in the whole protein of cells of simple HuR-siRNA1 group and simple HuR-siRNA2 group was significantly decreased (t=4.82, 4.44, P<0.05). Compared with that of sugar-free serum-free+ control siRNA group, the protein expression of human antigen R in the whole protein of cells of sugar-free serum-free+ HuR-siRNA1 group and sugar-free serum-free+ HuR-siRNA2 group was significantly decreased (t=4.39, 6.27, P<0.05). (5) Compared with those of sugar-free serum-free+ control siRNA group, the distribution of human antigen R in the cytoplasm of cells and its expression level were significantly decreased in sugar-free serum-free+ HuR-siRNA1 group (t=10.13, P<0.01). Compared with 1.00±0.06 of sugar-free serum-free+ control siRNA group, the lysosomal acidification level (0.73±0.06) in the cells of sugar-free serum-free+ HuR-siRNA1 group was significantly decreased (t=3.28, P<0.01). (6) Compared with those of sugar-free serum-free+ control siRNA group, the protein expressions of cathepsin D in the whole protein of cells, human antigen R in the cytoplasm protein of cells, and ATP6V1E1 in the whole protein of cells were significantly decreased in sugar-free serum-free+ HuR-siRNA1 group and sugar-free serum-free+ HuR-siRNA2 group (t=4.16, 3.99, 4.81, 5.07, 11.68, 12.97, P<0.05 or P<0.01). (7) Compared with that of normal control group, the mRNA expression of ATP6V1E1 in the cells of sugar-free serum-free 3.0 h group was significantly increased (t=5.51, P<0.05). Compared with that of sugar-free serum-free+ control siRNA group, the mRNA expression of ATP6V1E1 in the cells of sugar-free serum-free+ HuR-siRNA1 group was significantly decreased (t=5.97, P<0.05).@*Conclusions@#After sugar-free serum-free treatment in vitro, the autophagy in mouse primary cardiomyocytes is activated, the lysosomal acidification is enhanced, and the expression of human antigen R in cytoplasm is increased. Human antigen R function is activated and involved in maintaining lysosomal acidification during autophagy in mouse cardiomyocytes.

19.
Chinese Journal of Burns ; (6): 116-124, 2019.
Article in Chinese | WPRIM | ID: wpr-804755

ABSTRACT

Objective@#To investigate the role of hexokinase Ⅱ in the changes of autophagic flow in cardiomyocytes of mice with ischemia-hypoxia in vitro.@*Methods@#The hearts of totally six male and female C57BL/6 mice aged from 1 to 2 days were isolated to culture primary cardiomyocytes which were used for the following experiments. (1) The cells were divided into 6 groups according to the random number table (the same grouping method below), i. e., normal control 3, 6, and 9 h groups and ischemia-hypoxia 3, 6, and 9 h groups, with 4 wells in each group. After being regularly cultured for 48 h with Dulbecco′s modified Eagle medium/nutrient mixture F12 (DMEM/F12) medium (the same regular culture condition below), the cells in normal control 3, 6, and 9 h groups were cultured with replaced fresh DMEM/F12 medium for 3, 6, and 9 h, respectively, and the cells in ischemia-hypoxia 3, 6, and 9 h groups were cultured with replaced sugar-free serum-free medium in the low-oxygen incubator with a volume fraction of 1% oxygen and a volume fraction of 5% carbon dioxide at 37 ℃ (the same hypoxic culture condition below) for 3, 6, and 9 h, respectively. Cell viability was measured by the cell counting kit 8 (CCK-8) method. (2) The cells were grouped and treated the same as those in experiment (1), with 1 well in each group. Western blotting was used to detect the protein expressions of microtubule-associated protein 1 light chain 3 Ⅰ (LC3Ⅰ), LC3Ⅱ, p62, and hexokinase Ⅱ. (3) The cells were divided into normal control group, simple ischemia-hypoxia 9 h group, and ischemia-hypoxia 9 h+ 2-deoxyglucose (2-DG) group, with 4 wells in each group. After a regular culture for 48 h, the cells in normal control group were cultured with replaced fresh DMEM/F12 medium for 9 h; the cells in simple ischemia-hypoxia 9 h group were replaced with sugar-free serum-free medium, and the cells in ischemia-hypoxia 9 h+ 2-DG group were replaced with sugar-free serum-free medium in which 2-DG was dissolved in a concentration of 10 mmol/L (20 μmol), and then they were cultured with hypoxia for 9 h. Cell viability was measured by CCK-8 method. (4) The cells were grouped and treated the same as those in experiment (3), with 1 well in each group. Western blotting was used to detect the protein expressions of LC3Ⅰ, LC3Ⅱ, and p62. (5) The cells were grouped and treated the same as those in experiment (3), with 2 wells in each group. Transmission electron microscope was used to observe autophagosomes/autolysosomes in cardiomyocytes. (6) The cells were divided into normal control group, simple ischemia-hypoxia 9 h group, ischemia-hypoxia 9 h+ hexosinase Ⅱ small interfering RNA1 (HK-ⅡsiRNA1) group, and ischemia-hypoxia 9 h+ HK-ⅡsiRNA2 group, with 4 wells in each group. The cells in normal control group and simple ischemia-hypoxia 9 h group were regularly cultured for 48 h, and the cells in ischemia-hypoxia 9 h+ HK-ⅡsiRNA1 group and ischemia-hypoxia 9 h+ HK-ⅡsiRNA2 group were respectively transfected with 200 nmol/L HK-ⅡsiRNA1 and HK-ⅡsiRNA2 and then also cultured for 48 h. The cells in normal control group were cultured with replaced fresh DMEM/F12 medium for 9 h, and the cells in simple ischemia-hypoxia 9 h group, ischemia-hypoxia 9 h+ HK-ⅡsiRNA1 group, and ischemia-hypoxia 9 h+ HK-ⅡsiRNA2 group were cultured with replaced sugar-free serum-free medium and hypoxia for 9 h. Cell viability was measured by CCK-8 method. (7) The cells were grouped and treated the same as those in experiment (6), with 1 well in each group. Western blotting was used to detect the protein expressions of LC3Ⅰ, LC3Ⅱ, p62, and hexokinase Ⅱ. Except for experiment (5), each experiment was repeated 3 times. Data were processed with one-way analysis of variance and lest significant difference t test, and Bonferroni correction.@*Results@#(1) The viabilities of cardiomyocytes in ischemia-hypoxia 3, 6, and 9 h groups were 0.450±0.022, 0.385±0.010, and 0.335±0.015, respectively, which were significantly lower than 0.662±0.026, 0.656±0.028, and 0.661±0.021 of the corresponding normal control 3, 6, and 9 h groups, respectively (t=6.21, 9.12, 12.48, P<0.01). (2) Compared with those of corresponding normal control 3, 6, and 9 h groups, the LC3Ⅱ/Ⅰ ratio and protein expressions of p62 and hexokinase Ⅱ in cardiomyocytes of ischemia-hypoxia 3, 6, and 9 h groups were significantly increased (t3 h=16.15, 10.99, 5.30, t6 h=6.79, 10.42, 9.42, t9 h=15.76, 16.51, 7.20, P<0.05 or P<0.01). (3) The viability of cardiomyocytes in simple ischemia-hypoxia 9 h group was 0.353±0.022, which was significantly lower than 0.673±0.027 of normal control group (t=9.29, P<0.01). The viability of cardiomyocytes in ischemia-hypoxia 9 h+ 2-DG group was 0.472±0.025, which was significantly higher than that of simple ischemia-hypoxia 9 h group (t=3.60, P<0.05). (4) Compared with those of normal control group, the LC3Ⅱ/Ⅰ ratio and protein expression of p62 in cardiomyocytes of simple ischemia-hypoxia 9 h group were significantly increased (t=9.45, 8.40, P<0.01). Compared with those of simple ischemia-hypoxia 9 h group, the LC3Ⅱ/Ⅰratio and protein expression of p62 in cardiomyocytes of ischemia-hypoxia 9 h+ 2-DG group were significantly decreased (t=4.39, 4.74, P<0.05). (5) In cardiomyocytes of normal control group, only single autophagosome/autolysosome with bilayer membrane structure was observed. Compared with that of normal control group, the number of autophagosome/autolysosome with bilayer membrane structure in cardiomyocytes of simple ischemia-hypoxia 9 h group was increased significantly. Compared with that of simple ischemia-hypoxia 9 h group, the number of autophagosome/autolysosome with bilayer membrane structure in cardiomyocytes of ischemia-hypoxia 9 h+ 2-DG group was significantly decreased. (6) The viability of cardiomyocytes in simple ischemia-hypoxia 9 h group was 0.358±0.023, which was significantly lower than 0.673±0.026 in normal control group (t=9.12, P<0.01). The viabilities of cardiomyocytes in ischemia-hypoxia 9 h+ HK-ⅡsiRNA1 group and ischemia-hypoxia 9 h+ HK-ⅡsiRNA2 group were 0.487±0.027 and 0.493±0.022, respectively, which were significantly higher than the viability in simple ischemia-hypoxia 9 h group (t=3.63, 4.28, P<0.05). (7) Compared with those of normal control group, the LC3Ⅱ/Ⅰratio and protein expressions of p62 and hexokinase Ⅱ in cardiomyocytes of simple ischemia-hypoxia 9 h group were significantly increased (t=6.08, 6.31, 4.83, P<0.05 or P<0.01). Compared with those of simple ischemia-hypoxia 9 h group, the LC3Ⅱ/Ⅰ ratio and protein expressions of p62 and hexokinase Ⅱ in cardiomyocytes of ischemia-hypoxia 9 h+ HK-ⅡsiRNA1 group and ischemia-hypoxia 9 h+ HK-ⅡsiRNA2 group were significantly decreased (t=5.10, 7.76, 15.33, 4.17, 8.42, 12.11, P<0.05 or P<0.01).@*Conclusions@#Ischemia-hypoxia upregulates the expression level of hexokinase Ⅱ protein in mouse cardiomyocytes cultured in vitro, which decreases the viability of cardiomyocytes by impairing autophagic flow. To inhibit the activity of hexokinase Ⅱ or its expression can alleviate the ischemia-hypoxia damage of cardiomyocytes.

20.
Article in Chinese | WPRIM | ID: wpr-797108

ABSTRACT

Objective@#To analyze the biological effects of miRNA-155 in the cardiac myocyte apoptosis.@*Methods@#The mouse-derived macrophage cell line RAW264.7 was treated by different concentration or different stage of oxidized low density lipoprotein (ox-LDL), and transfected by miR-155 mimic (M group), miR-155 mimics-NC (M-NC group), miR-155 inhibitor (I group) or miR-155 inhibitor-NC (I-NC group), respectively. The cell viability was measured by CCK-8 assay, cell apopotosis was measured by TUNEL and flow cytometry.@*Results@#The ox-LDL induced cell viability of Raw264.7 cells decreased and the expression of miR-155 increased in dose and time dependent manner, after treatment with different concentration of ox-LDL (10, 20, 40, 80, 160 mg/L) or 80 mg/L of ox-LDL with different stage (6, 12, 24, 48, 72 h). The expression of miR-155 increased significantly. Raw264.7 cell viability decreased significantly, compared to that of the blank control. The difference between two groups had statistical significance (P<0.05). The cell viability in M group was significantly higher than that in M-NC group, in I group was significantly higher than that in I-NC group, and the difference between two groups was statistical significance (P<0.05). Compared to that in the M-NC group, the cell apoptosis rate in M group was significantly increased (P<0.05), compared to that in the I-NC group, the cell apoptosis rate in I group were significantly decreased (P<0.05).@*Conclusions@#miR-155 can enhance the Raw264.7 cell apoptosis induced by ox-LDL.

SELECTION OF CITATIONS
SEARCH DETAIL