Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 419
Filter
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(5): 783-792, sept. 2024. tab, ilus
Article in English | LILACS | ID: biblio-1578657

ABSTRACT

This study investigated Yishentongluo Recipe (YSTLF) effects on renal oxidative stress and fibrosis in membranous nephropathy (MN) rats. MN was induced by cationized bovine serum albumin injection. Rats were divided into control, MN, YSTLF, and benazepril groups. After four weeks of treatment, urine protein levels (UTP), serum total cholesterol (TC), triglycerides (TG), total protein (TP), and albumin (ALB) were assessed. Kidney microstructure, IgG immune complex deposition, and protein expressions of superoxide dismutase (SOD), malondialdehyde (MDA), transforming growth factor ß1 (TGF-ß1), collagen I (Collagen-I), α-smooth muscle actin (α-SMA), nuclear factor E2-related factor (Nrf2), haem oxygenase 1 (HO-1), and NADPH oxidase 4 (NOX4) were evaluated. YSTLF and BNPL treatments reduced UTP, TC, TG, increased TP and ALB levels, downregulated TGF-ß1, Collagen-I, and α-SMA, and upregulated Nrf2, HO-1, and NOX4. YSTLF partially reversed SOD reduction and MDA elevation, suggesting its efficacy in alleviating renal oxidative stress and fibrosis in MN rats via Nrf2/HO-1 signaling pathway activation.


Este estudio investigó los efectos de la receta Yishentongluo (YSTLF) sobre el estrés oxidativo renal y la fibrosis en ratas con nefropatía membranosa (MN). La MN se indujo mediante inyección de albúmina sérica bovina cationizada. Las ratas se dividieron en grupos de control, MN, YSTLF y benazepril. Después de cuatro semanas de tratamiento, se evaluaron los niveles de proteína en orina (UTP), colesterol total (CT), triglicéridos (TG), proteína total (TP) y albúmina (ALB) en suero. Se evaluaron la microestructura renal, el depósito de complejos inmunes IgG y expresiones proteicas de superóxido dismutasa (SOD), malondialdehído (MDA), factor de crecimiento transformante ß1 (TGF-ß1), colágeno I (Colágeno-I), α-actina del músculo liso (α-SMA), el factor nuclear E2 (Nrf2), la hemooxigenasa 1 (HO-1) y la NADPH oxidasa 4 (NOX4). Los tratamientos con YSTLF y BNPL redujeron UTP, TC, TG, aumentaron los niveles de TP y ALB, regularon negativamente TGF-ß1, Colágeno-I y α-SMA, y regularon positivamente Nrf2, HO-1 y NOX4. YSTLF revirtió parcialmente la reducción de SOD y la elevación de MDA, lo que sugiere su eficacia para aliviar el estrés oxidativo renal y la fibrosis en ratas MN mediante la activación de la vía de señalización Nrf2/HO-1.


Subject(s)
Animals , Rats , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Fibrosis/prevention & control , Oxidative Stress/drug effects , Medicine, Chinese Traditional
2.
Acta Pharmaceutica Sinica B ; (6): 190-206, 2024.
Article in English | WPRIM | ID: wpr-1011236

ABSTRACT

Macroautophagy (referred to as autophagy hereafter) is a major intracellular lysosomal degradation pathway that is responsible for the degradation of misfolded/damaged proteins and organelles. Previous studies showed that autophagy protects against acetaminophen (APAP)-induced injury (AILI) via selective removal of damaged mitochondria and APAP protein adducts. The lysosome is a critical organelle sitting at the end stage of autophagy for autophagic degradation via fusion with autophagosomes. In the present study, we showed that transcription factor EB (TFEB), a master transcription factor for lysosomal biogenesis, was impaired by APAP resulting in decreased lysosomal biogenesis in mouse livers. Genetic loss-of and gain-of function of hepatic TFEB exacerbated or protected against AILI, respectively. Mechanistically, overexpression of TFEB increased clearance of APAP protein adducts and mitochondria biogenesis as well as SQSTM1/p62-dependent non-canonical nuclear factor erythroid 2-related factor 2 (NRF2) activation to protect against AILI. We also performed an unbiased cell-based imaging high-throughput chemical screening on TFEB and identified a group of TFEB agonists. Among these agonists, salinomycin, an anticoccidial and antibacterial agent, activated TFEB and protected against AILI in mice. In conclusion, genetic and pharmacological activating TFEB may be a promising approach for protecting against AILI.

3.
Article in Chinese | WPRIM | ID: wpr-1011448

ABSTRACT

ObjectiveTo investigate the effects of Xinjia Congrong Tusizi decoction (XJCTD) on ovarian functions in the rat model of premature ovarian insufficiency (POI) and decipher the mechanism of regulating the tumor suppressor protein (p53)/nuclear factor E2-related factor 2 (Nrf2) pathway to attenuate granulosa cell ferroptosis. MethodForty-eight SPF-grade female SD rats were randomized into control, model, low-, medium-, and high-dose (1.1, 2.2, 4.4 g·kg-1) XJCTD, and Western medicine (coenzyme Q10, 0.002 7 g·kg-1) groups, with eight rats in each group. The rat model of POI was established by gavage of triptolide (TP), and after successful modeling, each group was administrated with the corresponding drugs by gavage for 14 d. The body weight and ovarian weight of each rat were weighed and the ovarian index was calculated. The morphology of the ovarian tissue was observed by hematoxylin-eosin staining, and the proportions of growing follicles and atretic follicles were calculated. The serum levels of anti-Müllerian hormone (AMM), estradiol (E2), and follicle-stimulating hormone (FSH) were measured by enzyme-linked immunosorbent assay (ELISA). The DCFH-DA fluorescent probe was used to measure the reactive oxygen species (ROS) content in granulosa cells. The content of cellular Ferrous ion (Fe2+), lipid peroxide (LPO), malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) was detected by colorimetry. The expression of the tumor suppressor protein p53,Nrf2, solute carrier family 7 member 11 (SLC7A11), and glutathione peroxidase 4 (GPX4) was determined by immunohistochemistry and Western blot. ResultCompared with the control group, the model group showed decreased ovarian weight, body weight, and ovarian index (P<0.01), reduced ovarian tissue volume and proportion of growing follicles (P<0.01), increased proportion of atretic follicles (P<0.01), lowered AMH and E2 levels and elevated FSH level in the serum (P<0.01), and elevated levels of Fe2+, ROS, LPO, and MDA (P<0.01) and lowered levels of GSH and SOD in granulosa cells (P<0.01). Moreover, the modeling up-regulated the expression of p53 (P<0.01) and down-regulated the expression of Nrf2, SLC7A11, and GPX4 (P<0.05, P<0.01) in the ovarian tissue. Compared with the model group, XJCTD increased the body weight, ovarian weight, and ovarian index (P<0.01), alleviated the pathological changes in the ovarian tissue, increased the proportion of growing follicles (P<0.01), decreased the proportion of atretic follicles (P<0.01), and reduced the content of ROS in granulosa cells (P<0.05, P<0.01). In addition, medium- and high-dose XJCTD lowered the FSH level (P<0.01) and raised E2 and AMH levels (P<0.01) in the serum, reduced the Fe2+ content (P<0.05, P<0.01), and increased the SOD content (P<0.01) in granulosa cells. High-dose XJCTD reduced the LPO and MDA content (P<0.01) and increased the SOD content (P<0.01) in the granulosa cells, down-regulated the expression of p53 (P<0.05), and up-regulated the expression of Nrf2, SLC7A11, and GPX4 in the ovarian tissue (P<0.05, P<0.01). ConclusionXJCTD may protect the ovarian function in the rat model of POI by regulating the p53/Nrf2 signaling pathway to attenuate the ferroptosis of ovarian granulosa cells.

4.
Article in Chinese | WPRIM | ID: wpr-1011451

ABSTRACT

ObjectiveTo investigate the effect and mechanism of Shenqi Tangluo pill (SQTLP) on oxidative stress injury of skeletal muscle of type 2 diabetes mellitus (T2DM) mice based on nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1)/NAD(P)H quinone oxidoreductase 1 (NQO1) pathway. MethodA total of 60 7-week-old male db/db mice [specific pathogen-free (SPF) grade] were selected and fed for one week for adaption. They were divided into the model control group, SQTLP low-, medium- and high-dose (19, 38, and 76 g·kg-1) groups and metformin group (0.26 g·kg-1) by gavage. Each group consisted of 12 mice. Twelve male db/m mice of the same age were selected as the blank group. The intervention was implemented continuously for 8 weeks. Fasting blood glucose (FBG) was detected. Fasting serum insulin (FINS) levels were detected by enzyme-linked immunosorbent assay (ELISA), and the homeostasis model assessment-insulin resistance (HOMA-IR) index and the homeostasis model assessment-insulin sensitivity index (HOMA-ISI) were calculated. Oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) were conducted. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and the contents of malondialdehyde (MDA) and reduced nicotinamide adenine dinucleotide phosphate (NADPH) in skeletal muscle tissues were detected by biochemical kits. Hematoxylin-eosin (HE) staining was used to observe the pathological changes in skeletal muscle tissues. The levels of reactive oxygen species (ROS) and 4-hydroxynonenal (4-HNE) in skeletal muscle tissue were detected by immunofluorescence (IF). The expression levels of Nrf2, HO-1, NQO1 and glutamate-cysteine ligase catalytic subunit (GCLC) proteins in skeletal muscle tissues were detected by Western blot. ResultCompared with those in the blank group, FBG, FINS and HOMA-IR in the model group were significantly increased (P<0.05), while HOMA-ISI was decreased (P<0.05). The results of OGTT and ITT showed that blood glucose was significantly increased at all time points (P<0.05), and glucose tolerance and insulin tolerance were significantly impaired. SOD and GSH-Px activities in skeletal muscle tissues were significantly decreased (P<0.05), and MDA and NADPH contents were significantly increased (P<0.05). In skeletal muscle tissues, the arrangement of muscle fibers was loose, the nucleus was disordered, and inflammatory cells were infiltrated. The expression levels of ROS and 4-HNE in skeletal muscle tissues were significantly increased (P<0.05). The protein expression levels of Nrf2, HO-1, NQO1 and GCLC in skeletal muscle tissues were significantly decreased (P<0.05). Compared with those in the model group, FBG, FINS and HOMA-IR in the metformin group were significantly decreased (P<0.05), while HOMA-ISI was increased (P<0.05). The results of OGTT and ITT showed that blood glucose in the metformin group was significantly decreased at all time points (P<0.05). The activities of SOD and GSH-Px in skeletal muscle tissues were significantly increased (P<0.05), while the contents of MDA and NADPH were significantly decreased (P<0.05). No obvious abnormality was found in the skeletal muscle tissue of the metformin group. The expressions of ROS and 4-HNE in skeletal muscle tissues were decreased (P<0.05). The protein expression levels of Nrf2, HO-1, NQO1 and GCLC in skeletal muscle tissues were significantly increased (P<0.05). Compared with those in the model group, FBG, FINS and HOMA-IR in the SQTLP medium- and high-dose groups were significantly decreased (P<0.05), while HOMA-ISI was increased (P<0.05). The results of OGTT and ITT showed that the glucose tolerance and insulin tolerance of mice were improved in each dose group of SQTLP. The GSH-Px activity in the SQTLP low-dose group was significantly increased (P<0.05), and the NADPH content was decreased (P<0.05). The activities of SOD and GSH-Px in the SQTLP medium- and high-dose groups were significantly increased (P<0.05), while the contents of MDA and NADPH were significantly decreased (P<0.05). The skeletal muscle tissue injury of mice in each dose group of SQTLP was ameliorated to different degrees. In the SQTLP medium- and high-dose groups, the expressions of ROS and 4-HNE were decreased (P<0.05), and the protein expression levels of Nrf2, HO-1, NQO1 and GCLC were significantly increased (P<0.05). Compared with those in the SQTLP low-dose group, FBG and HOMA-IR in the SQTLP high-dose group were significantly decreased (P<0.05), while HOMA-ISI was increased (P<0.05). The results of OGTT and ITT showed that the SQTLP high-dose group significantly improved the glucose tolerance and insulin tolerance of mice. The activities of SOD and GSH-Px in skeletal muscle tissues were significantly increased (P<0.05), while the contents of MDA and NADPH were significantly decreased (P<0.05). No obvious abnormality was found in the skeletal muscle tissue, the expressions of ROS and 4-HNE were decreased (P<0.05), and the protein expression levels of Nrf2, HO-1, NQO1 and GCLC were significantly increased (P<0.05) in the skeletal muscle tissue of the SQTLP high-dose group. ConclusionSQTLP can significantly improve IR in T2DM mice, and the mechanism is related to SQTLP activating the Nrf2/HO-1/NQO1 signaling pathway, promoting the expression of antioxidant enzymes, and thus improving the oxidative stress injury in the skeletal muscle.

5.
Article in Chinese | WPRIM | ID: wpr-1016837

ABSTRACT

ObjectiveTo observe the effect of modified Tianwang Buxindan (MTBD) on the skin of sleep-deprived (SD) mice and investigate its mechanism. MethodSixty 2-month-old female Kunming mice were randomly divided into a blank group, a model group, a vitamin C (VC, 0.08 g·kg-1), and MTBD low-, medium-, and high-dose groups (6.5, 12.5, 25 g·kg-1). Except for the blank group, the other groups were subjected to SD mouse model induction (using multiple platform water environment method for 18 hours of sleep deprivation daily from 15:00 to next day 9:00), continuously for 14 days, and caffeine (CAF, 7.5 mg·kg-1) was injected intraperitoneally from the 2nd week onwards, continuously for 7 days. While modeling, the blank group and the model group were administered with normal saline (0.01 mL·g-1), and the other groups received corresponding drugs for treatment. On the day of the experiment, general observations were recorded (such as body weight, spirit, fur, and skin). After sampling, skin tissue pathological changes were observed under an optical microscope using hematoxylin-eosin (HE) and Masson staining methods. Skin thickness and skin moisture content were measured. Biochemical assay kits were used to detect skin hydroxyproline (HYP) content, skin and serum superoxide dismutase (SOD) activity, and malondialdehyde (MDA) content. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum interleukin (IL)-6, tumor necrosis factor (TNF)-α, and IL-1β levels in mice. Western blot was used to detect skin tissue type Ⅰ collagen (ColⅠ), type Ⅲ collagen (ColⅢ), phosphatidylinositol 3-kinase (PI3K), phosphorylated (p)-PI3K, protein kinase B (Akt), p-Akt, nuclear factor E2-related factor 2 (Nrf2), heme oxygenase (HO)-1, and nuclear factor (NF)-κB protein expression. ResultCompared with the blank group, the model group showed varying degrees of changes. In general, signs of aging such as reduced body weight (P<0.01), listlessness, dull fur color, and formation of wrinkles on the skin appeared. Tissue specimen testing revealed skin thinning, flattening of the dermoepidermal junction (DEJ), and reduced collagen fibers under the optical microscope. Skin thickness and moisture content decreased, skin tissue HYP content significantly decreased (P<0.01), skin and serum SOD activity significantly decreased (P<0.01), and MDA content significantly increased (P<0.01). Serum IL-6, TNF-α, and IL-1β levels significantly increased (P<0.01). Skin ColⅠ, ColⅢ, p-PI3K/PI3K, p-Akt/Akt, Nrf2, and HO-1 protein expression significantly decreased (P<0.05, P<0.01), and NF-κB expression increased (P<0.01). Compared with the model group, the VC group and the MTBD low-dose group showed increased skin moisture content, HYP content, SOD activity, and ColⅠ, ColⅢ, p-PI3K/PI3K protein expression (P<0.05, P<0.01), and decreased serum MDA content (P<0.05). In addition, a decrease in serum IL-6 and IL-1β levels was detected in the MTBD low-dose group (P<0.05), while the above indicators in the MTBD medium- and high-dose groups improved (P<0.05, P<0.01). ConclusionSleep deprivation accelerates the aging process of the skin in SD model mice. MTBD can improve this phenomenon, exerting anti-inflammatory and antioxidant effects, and its mechanism of action may be related to the activation of the PI3K/Akt/Nrf2 signaling pathway.

6.
Article in Chinese | WPRIM | ID: wpr-1017156

ABSTRACT

ObjectiveBased on the nuclear factor erythroid 2 related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway, this paper explores the effect of Sinisan (SNS) on liver oxidative stress injury in cholestatic hepatitis rats and its mechanism. MethodThirty 6-week-old male SD rats were randomly divided into a control group, model group, low and high dose groups of SNS (2.5 and 5 g·kg-1) and ursodeoxycholic acid group (UDCA, 63 mg·kg-1), with six rats in each group. Rats were administrated for seven consecutive days. On the 5th day, the control group was given olive oil of 10 mL·kg-1, and the other groups were given alpha-naphthalene isothiocyanate (ANIT) of 80 mg·kg-1. The serum biochemical indicator levels of cholestasis and the content of antioxidant factors in rat liver were detected by enzyme-linked immunosorbent assay (ELISA). Hematoxylin-eosin (HE) staining was used to observe the pathological changes in liver tissue. The relative mRNA and protein expressions of Nrf2, HO-1, and quinone oxidoreductase 1 (NQO1) in liver tissue were detected by real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot. ResultCompared with the control group, the model group showed a significant increase in the serum biochemical indicator levels of cholestasis and the content of antioxidant factors in liver tissue (P<0.01). There were obvious pathological changes in the model group such as the disordered arrangement of hepatocytes, obvious congestion and necrosis in the portal area, infiltration of inflammatory cells, and destruction of the interlobular bile duct. The relative mRNA and protein expressions of Nrf2, HO-1, and NQO1 in liver tissue were significantly down-regulated in the model group (P<0.05, P<0.01). Compared with the model group, the groups of SNS showed a significant decrease in the serum biochemical indicator levels of cholestasis and the content of antioxidant factors in liver tissue (P<0.01), and the pathological liver injury was obviously improved. The necrotic area was reduced, and the infiltration of inflammatory cells was decreased. In addition, there was a small amount of extravasated blood in the interlobular vein. The relative mRNA and protein expressions of Nrf2, HO-1, and NQO1 in liver tissue were significantly up-regulated (P<0.05, P<0.01). ConclusionSNS can significantly improve liver injury in cholestatic hepatitis rats, and its mechanism may be related to the inhibition of oxidative stress response mediated by the Nrf2/HO-1 signaling pathway.

7.
Acta Universitatis Medicinalis Anhui ; (6): 331-335,343, 2024.
Article in Chinese | WPRIM | ID: wpr-1017250

ABSTRACT

Objective To investigate the effects of indirubatin derivative E804 on proliferation and migration of non-small cell lung cancer(NSCLC)A549 cells,and to elucidate the possible mechanism of Nrf2-HO-1/GPX4 pathway.Methods Lung cancer A549 cells were used as the cell model.The proliferation and migration of differ-ent specific inhibitors(Nec-1,CQ,Z-VAD,DFO,Fer-1 and Lip-1)in 0,10 μmol/L E804 and 10 μmol/L E804+groups were observed by MTT and cell scratch assay.The contents of reactive oxygen species(ROS)were de-tected by DCFH-DA fluorescence probe method,the contents of Fe2+were detected by colorimetric method,the contents of reduced glutathione(GSH)were detected by spectrophotometry,and the contents of malondialdehyde(MDA)were detected by micromethod.The expression levels of SLC7A11,Transferrin,GPX4,SLC40A1,Nrf2 and HO-1 were detected by Western blot in cells of 0,2.5,5 and 10 μmol/L E804 groups.Results Compared with the control group(0 μmol/L E804),2.5,5 and 10 μmol/L E804 significantly increased intracellular ROS,Fe2+and MDA levels,and decreased intracellular GSH content(P<0.01).Meanwhile,the expression levels of SLC7A11,GPX4,SLC40A1,Nrf2 and HO-1 significantly decreased(P<0.01),and the expression level of Transferrin increased(P<0.05).Compared with the 10 μmol/L E804 group alone,the apoptosis inhibitor(Z-VAD)group and the ferroptosis inhibitor(DFO,Fer-1 and Lip-1)group could significantly reverse the inhibition of proliferation and migration of A549 cells by 10 μmol/L E804(P<0.01).Conclution E804 can induce ferrop-tosis and inhibit the proliferation and migration of A549 cells,which may be related to the inhibition of Nrf2-HO-1/GPX4 pathway.

8.
Basic & Clinical Medicine ; (12): 69-76, 2024.
Article in Chinese | WPRIM | ID: wpr-1018574

ABSTRACT

Objective To investigate sodium hydrogen sulfide(NaHS)with function of regulating glutathione(GSH)synthesis to reduce reactive oxygen species(ROS)production in type 2 diabetic cardiomyopathy(DCM).Methods Mouse cardiomyocyte cell line HL-1 was incubated with high concentration of glucose(HG:40 mmol/L)and palmitate(Pal:500 μmol/L)as a cell model of type 2 DCM.HL-1 cells were incubated with NaHS(100 μmol/L),DL-propargylglycin(PPG,1 mmol/L)and N-acetyl-l-cysteine(NAC,5 mmol/L),respectively for 72 hours.The expression of cystathionine-γ-lyase(CSE)and the key enzymes of glutathione production was tested by Western blot.Dihydroethidium(DHE)and dichlorofluoromethane(DCFH)were used to detect the content of ROS in HL-1 cells.Cell viability was detected by CCK8 kit.The content of total GSH was detected.The interaction between muscle specific ring finger protein 1(Murf1)and nuclear factor erythroid-derived 2-related factor 2(Nrf2)and Nrf2 ubiquitylation was determined by co-immunoprecipitation(co-IP).Results Compared with control group,the expression level of CSE,solute carrier family 7 members 11(SLC7A11),glutamate cysteine ligase C(GCLC),glutamate cysteine ligase M(GCLM)and glutathione synthetase(GSS)in HL-1 cells treated incubated with high glucose and palmitate was decreased,however,NaHS was found to restore it.NaHS reduced the content of ROS in HL-1 cells treated with high glucose and palmitate.The interaction between murf1 and Nrf2 was confirmed by co-immunoprecipitation(Co-IP).Compared with NaHS group,the ubiquitylation level of Nrf2 was enhanced in high glucose and palmitate group.Conclusions Sodium hydrosulfide may reduce the ubiquitylation level of Nrf2 and promote the expression of key enzymes of GSH synthesis.

9.
Article in Chinese | WPRIM | ID: wpr-1019358

ABSTRACT

Purpose To investigate the effect of autophagy intervention on ferroptosis and drug resistance of colorectal canc-er cells and its molecular mechanism.Methods The human colorectal cancer cell lines HCT-8,COLO205,HCT-116,SW620,and SW480 were cultured.HCT-116 cells with moder-ate expression of LC3 were screened,and the expression differ-ences of LC3,p62,Keap1,Nrf2,GPX4 proteins,Fe2+,GSH,and MDA between them and OXA-resistant HCT-116/OXA cell lines were detected.The expression levels of LC3,p62,Keap1,Nrf2,GPX4,Fe2+,GSH and MDA were assessed in HCT-116/OXA cells through the intervention of autophagy and ferroptosis intervention agent combined with oxaliplatin.The proliferative activity and sensitivity to oxaliplatin in each group were detected by CCK-8 assay.Cell growth and invasion ability of each group were detected by plate cloning and Trans well assay.Results LC3,p62 and GPX4 expression levels of HCT-116 cells in the 5 groups were moderate.Compared with HCT-116 cells,HCT-116/OXA was less sensitive to oxaliplatin,and the proteins of p62,Nrf2 and GPX4 were highly expressed,LC3 and Keap1 were lowly expressed,and the expression of Fe2+,GSH and MDA were increased(P<0.05).The levels of LC3,Keap1 protein,Fe2+and MDA in Rapa and Rapa+Fer-1 groups were higher than those in Fer-1 and control groups,while p62,Nrf2,GPX4 and GSH levels were lower.The expressions of GPX4 pro-tein and GSH in Rapa+Fer-1 group were lower than those in Rapa group(P<0.05).In the autophagy inhibitor group,LC3,p62,Nrf2,GPX4 and GSH were highly expressed in the CQ and CQ+Erastin groups compared with the control and Eras-tin groups,while Keap1 protein,Fe2+and MDA were low.The levels of GPX4 protein and GSH in Erastin group were lower than those in the other three groups,and the levels of Fe2+and MDA were higher than those in the other three groups(P<0.05).The combination of autophagy activator OXA showed that Rapa intervention group had higher chemical sensitivity to OXA,less number of migrating cells and lower cell proliferation activity than the other three groups.The sensitivity of Rapa+Fer-1 group to oxaliplatin was lower than that of Rapa group,but higher than that of Fer-1 group and control group(P<0.05).There was no significant difference between Fer-1 group and con-trol group(P<0.05).Compared with the control group,the cell activity,migration capacity and clonogenesis capacity of Erastin,CQ+Erastin and CQ groups were decreased when auto-phagy inhibitor was combined with OXA,and the Erastin group was the lowest,while the CQ+Erastin group was higher than the Erastin group,and lower than the CQ group(P<0.05).Con-clusion In colorectal cancer,autophagy is involved in the regu-lation of ferroptosis,and intervention in autophagy can regulate ferroptosis in colorectal cancer cells through the p62-Keap1/Nrf2-GPX4 pathway,thereby reversing oxaliplatin resistance.

10.
Article in Chinese | WPRIM | ID: wpr-1020748

ABSTRACT

Objective The preventive effect of epigallocatechin gallate(EGCG)on hyperglycemia-induced hemorrhagic transformation(HT)was analyzed,and the underlying mechanisms were further explored.Methods Male SD rats were randomly divided into sham operation group(Sham,n = 20),model group(n = 27),hyperglycemia model group(HG,n = 43),and EGCG group(n = 43).In the model group,only the electrocoagulation cerebral ischemia model was established,and the HG group and the EGCG group were used to establish the HT model with acute hyperglycemia combined with electrocoagulation cerebral ischemia model.In addition,EGCG was adminis-tered by gavage for 5 days before cerebral ischemia at a dose of 50 mg/kg/d.Further studies confirmed the relevant targets by using network pharmacology to predict the potential targets and pathways of EGCG in the occurrence of HT.Results Compared with the model group,the mortality rate of the rats in the HG group was significantly increased[21.2%(6/27)vs.51.2%(22/43),P<0.05].The mortality of rats in the EGCG group was significantly lower than that in the HG group[30.20%(13/43)vs.51.2%(22/43),P<0.05].Second,mNSS,Longa score and infarct volume in the EGCG group were significantly lower than those in the HG group(P<0.05).The incidence of HT in the HG group was higher than that in the model group(59.3%vs.90.7%).EGCG significantly reduced the incidence of hyperglycemia-induced HT to 69.8%.Compared with the HG group,EGCG decreased the hemoglobin content from(53.42±5.11)mg/dL to(37.04±2.39)mg/dL respectively(P<0.05).Network pharmacology revealed that Nrf2-Keap1-mediated neuroinflammation may be associated with hyperglycemia-induced HT.The expression of Nrf2 and Keap1 was significantly decreased and the expression of TLR4 and phosphorylation of NF-κB was significantly increased in the HG group,but EGCG reversed this process.Conclusion EGCG pretreatment prevents the occurrence of HT,which may be related to the neuroprotection mediated by activation of the Nrf2-Keap1 signaling pathway.

11.
Article in Chinese | WPRIM | ID: wpr-1021547

ABSTRACT

BACKGROUND:Oxidative stress plays a critical role in intervertebral disc degeneration.As a reducing material with good biocompatibility,black phosphorus quantum dots have the potential to resist oxidative stress and retard intervertebral disc degeneration.OBJECTIVE:To evaluate the effect of black phosphorus quantum dots on scavenging reactive oxygen species in the microenvironment of an intervertebral disc through in vivo and in vitro experiments,and further explore the role of black phosphorus quantum dots in Nrf2/ARE pathway and intervertebral disc inflammation.METHODS:Black phosphorus quantum dots were prepared by a liquid exfoliation technique.(1)In vitro experiment:The nucleus pulposus cells of SD rats were isolated and extracted,and the passages 2-4 nucleus pulposus cells were cocultured with different solutions,including F12-DMEM medium(blank group),black phosphorus quantum dot solution,hydrogen peroxide solution,hydrogen peroxide+black phosphorus quantum dot solution,hydrogen peroxide+black phosphorus quantum dot+Nrf2 specific inhibitor ML385 solution.Cell live/dead staining and intracellular reactive oxygen species,mitochondrial membrane potential and western blot assay were performed respectively.(2)In vivo experiment:Thirty SD rats were randomly divided into sham operation,puncture and puncture + black phosphorus groups,with 10 rats in each group.A Co7-10 intervertebral disc degeneration model was established using intervertebral disc puncture in the puncture group and the puncture+black phosphorus group.Black phosphorus quantum dot solution was injected in the intervertebral disc after a puncture in the puncture+black phosphorus group.The intervertebral disc tissue imaging and histological staining were evaluated at 4 and 8 weeks after surgery.RESULTS AND CONCLUSION:(1)In vitro experiment:Live/dead staining revealed that the black phosphorus quantum dots had good biocompatibility,were non-toxic to cells,and had a protective effect on nucleus pulposus cells under oxidative stress.Intracellular reactive oxygen species and JC-1 fluorescent probes showed that black phosphorus quantum dots could regulate the reduction of mitochondrial membrane potential caused by oxidative stress in nucleus pulposus cells and protected cells from hydrogen peroxidation-induced intracellular oxidative stress.Western blot analysis showed that compared with the blank group,the protein expressions of Nrf2,heme oxygenase 1,quinone oxidoreductase and type Ⅱ collagen were decreased in the hydrogen peroxide group(P<0.05),while the protein expressions of tumor necrosis factor α,interleukin 1β,matrix metalloproteinase 13 and p65 were increased(P<0.05).The addition of black phosphorus quantum dots could reverse the inhibitory effect of hydrogen peroxide on the Nrf2 pathway and reduce the inflammatory response caused by oxidative stress,but NrF2-specific inhibitors could cancel this effect.(2)In vivo experiment:X-ray and MRI demonstrated that at 4 and 8 weeks after surgery,the intervertebral disc height and water content of nucleus pulposus in the puncture group were lower than those in the sham operation group(P<0.05),and the intervertebral disc height and water content of nucleus pulposus in the puncture+black phosphorus group were higher than those in the puncture group(P<0.05).Histological staining exhibited that the degree of intervertebral disc degeneration in the puncture+black phosphorus group was less than that in the puncture group,and the expression of heme oxygenase 1 protein was higher than that in the puncture+black phosphorus group.(3)Our results have indicated that black phosphorus quantum dots can exert an antioxidant effect and delay intervertebral disc degeneration by regulating Nrf2/ARE pathway.

12.
Article in Chinese | WPRIM | ID: wpr-1021895

ABSTRACT

BACKGROUND:Inflammation and oxidative stress contribute to the barriers of regeneration in chronic wound.Oxymatrine has various biological activities,such as anti-oxidation,anti-inflammation and so on,which may have the potential effect of promoting wound healing. OBJECTIVE:To investigate the effect of oxymatrine on wound healing and the protective effect on H2O2-induced oxidative stress injury in human keratinoid cell line HaCaT cells. METHODS:(1)In vivo experiment:Hyaluronic acid methacryloyl hydrogels containing 0,0.05,0.1,0.2 g/L oxymatrine were prepared.A full-layer skin defect model with a diameter of 12 mm was made in the back of 75 diabetic mice and randomly divided into five groups for intervention,with 15 mice in each group.The wounds of the model group were bandaged and fixed.The wounds of the hydrogel group were covered with hyaluronic acid methacryloyl hydrogel.The wounds of the low-dose,moderate-dose and high-dose oxymatrine groups were covered with hyaluronic acid methacryloyl hydrogel containing 0.05,0.1,and 0.2 g/L oxymatrine,respectively,and then bandaged and fixed after light curing.Relevant indicators were detected within 14 days.(2)In vitro experiment:Human keratinocyte line HaCaT was divided into five groups.The normal group was cultured conventionally.H2O2 group and low-,moderate-and high-concentration oxymatrine groups were treated with H2O2 for 4 hours,and then the medium was replaced with medium containing 0,0.05,0.1,and 0.2 g/L oxymatrine,respectively,and the relevant indexes were detected after 24 hours of culture. RESULTS AND CONCLUSION:(1)In vivo experiment:Compared with the model group,the wound healing rate of mice in the hydrogel group had no significant change.The wound healing rate of mice in the low-,moderate-and high-dose oxymatrine group was increased at 7 and 14 days after treatment(P<0.05).Pathological observation of wound section 14 days after treatment showed that compared with the model group,the thickness of regenerated epidermal layer,the number of microvessels,and collagen deposition in the moderate-and high-dose oxymatrine groups were increased(P<0.05).Western blot assay analysis of wound samples 7 days after surgery showed that compared with the model group,the protein expressions of tumor necrosis factor α and interleukin 6 in the moderate-and high-dose oxymatrine groups were decreased(P<0.05).(2)In vitro experiment:CCK8 assay,EdU and Ki67 staining showed that compared with the H2O2 group,the cell proliferation ability of the moderate-and high-concentration oxymatrine groups was significantly increased(P<0.05).Compared with the H2O2 group,mitochondrial membrane potential was increased(P<0.05)and reactive oxygen species content was decreased(P<0.05)in the moderate-and high-concentration oxymatrine groups.Western blot assay results showed that compared with the H2O2 group,the expression levels of Nrf2 nuclear protein,Nrf2 total protein,HO-1 protein,and superoxide dismutase 1 protein were increased in the high-concentration oxymatrine group(P<0.05).(3)These findings confirm that oxymatrine can alleviate oxidative stress damage in HaCat cells and accelerate wound healing by upregulating the levels of Nrf2 and HO-1 protein.

13.
Article in Chinese | WPRIM | ID: wpr-1026815

ABSTRACT

Objective To observe the effects of Yiqi Huoxue Tuodu Prescription on Keap1Nrf2/HO-1 signaling pathway in rats with chronic nonbacterial prostatitis(CNP);To explore its mechanism for the treatment of CNP.Methods CNP rat model was prepared using castration combined with estrogen induction method.Totally 48 SD rats were divided into blank group,model group,celecoxib group and Yiqi Huoxue Tuodu Prescription group according to the random number table method,with 12 rats in each group.In the celecoxib group,celecoxib suspension was instilled 0.035 g/kg,and in the Yiqi Huoxue Tuodu Prescription group,Yiqi Huoxue Tuodu Prescription water decoction was instilled 8.64 g/kg,and the blank group and the model group were instilled with equal volume of normal saline for 28 days.Mechanical pain threshold in rats was measured using Von Frey fiber optic pain gauge,HE staining was used to observe pathological changes in prostate tissue and pathological scoring,the content of reactive oxygen species(ROS)in prostate tissue were detected by chemical fluorescence method and the glutathione peroxidase(GSH-Px)activity and malondialdehyde(MDA)content in prostate tissue were detected by colorimetric method,Western blot was used to detect the expressions of Kelch like ECH related protein 1(Keap1),nuclear factor E2 related factor 2(Nrf2),and heme oxygenase-1(HO-1)protein in prostate tissue.Results Compared with the blank group,rats in the model group had significantly lower mechanical pain threshold and significantly decreased prostate index(P<0.01);the size of the glandular cavity in prostate tissue varied,with the disappearance of secretions in the cavity,interstitial looseness and edema,a large amount of fibrous tissue hyperplasia and inflammatory cell infiltration,and a significant increase in pathological scores(P<0.01);the contents of ROS and MDA in prostate tissue significantly increased,the activity of GSH-Px significantly decreased(P<0.01),the expression of Keap1 and Nrf2 proteins significantly decreased,and the expression of HO-1 protein significantly increased(P<0.01,P<0.05).Compared with the model group,the mechanical pain threshold of the rats in the Yiqi Huoxue Tuodu Prescription group was significantly higher(P<0.01);there was mild damage to prostate tissue,with a small amount of fibrous hyperplasia and inflammatory cell infiltration,and a significant decrease in pathological scores(P<0.01,P<0.05);the contents of ROS and MDA in prostate tissue significantly decreased,and the GSH-Px activity significantly increased(P<0.01),the Keap1 and Nrf2 protein expressions significantly increased and HO-1 protein expression significantly decreased in prostate tissue(P<0.01,P<0.05).Conclusion Yiqi Huoxue Tuodu Prescription can effectively improve the histopathological morphology and increase the pain threshold of the prostate gland in CNP rats,and its mechanism of action may be related to the regulation of Keap1/Nrf2/HO-1 signaling pathway and reduction of oxidative stress damage in prostate tissue of rats.

14.
Article in Chinese | WPRIM | ID: wpr-1028754

ABSTRACT

AIM To investigate the protective effects and the mechanism of corosolic acid on doxorubicin-induced cardiotoxicity in H9c2 cardiomyocytes.METHODS To screen and determine the effective concentration of corosolic acid,the injury models of H9c2 cardiomyocytes established by 1 μmol/L doxorubicin were exposed to 24 h different concentrations of corosolic acid,followed by detections of their cell activity by MTT method;their cell apoptosis morphology by Hoechst 33342 staining method;their cell apoptosis rate by Annexin V-FITC/PI double staining method;their intracellular ROS level by DCFH-DA probe;their intracellular iron level by iron ion colorimetry;and their protein expressions of Bax,Bcl-2,cleaved-caspase3,Nrf2,GPX4 and Ptgs2 by Western blot.RESULTS Upon the doxorubicin-induced injury models of H9c2 cardiomyocytes,corosolic acid improved their viability and survival rate(P<0.05),decreased their levels of ROS and Fe2+ and the apoptosis rate(P<0.05),up-regulated the protein expressions of Bcl-2,Nrf2 and GPX4(P<0.05),and down-regulated the protein expressions of Bax,cleved-caspase 3 and Ptgs2(P<0.05).CONCLUSION Corosolic acid can inhibit the ROS level and apoptosis of doxorubicin-induced injury models of H9c2 cardiomyocytes,and the iron death as well via activating Nrf2/GPX4 pathway.

15.
Article in Chinese | WPRIM | ID: wpr-1028770

ABSTRACT

AIM To investigate the effects of Zhuangyao Shuanglu Tongnao Formula on neuronal apoptosis in rats with cerebral ischemia-reperfusion injury based on the study of oxidative stress and inflammatory response.METHODS The rats were randomly divided into the sham operation group,the model group,the edaravone group(3.0 mg/kg),the low,medium and high dose groups(9.0,18.0,36.0 g/kg)of Zhuangyao Shuanglu Tongnao Formula,with 18 rats in each group.The middle cerebral artery occlusion/reperfusion was conducted by thread embolism method to simulate cerebral ischemia reperfusion injury in rats followed by 6 days corresponding drugs administration.Subsequently,the rats had their neurological function deficit scored by Zeal Longa scoring method;their sizes of cerebral infarction areas measured by TTC staining;their pathological damage and apoptosis of neurons in hippocampal CA1 area of ischemic penumbra of the brain tissue detected by HE staining and TUNEL staining;their SOD activity and levels of GSH,MDA,IL-6,IL-1β,TNF-α in brain tissue detected by kits;and their protein expressions of Bax,Bcl-2,caspase-3,cleaved-capase-3,TLR4,NF-κB p65,Nrf2,HO-1 in rat brain tissue determined by Western blot.RESULTS Compared with the model group,the groups intervened with edaravone,medium and high dose of Zhuangyao Shuanglu Tongnao Formula displayed improvements in the scores of nerve function defects,the rate of cerebral infarction,the rate of neuronal apoptosis,the levels of IL-6,IL-1β,TNF-α and MDA in the ischemic penumbra of brain tissues,the protein expressions of Bax and TLR4,the ratio of cleaved-capase-3/caspase-3 and p-NF-κB p65/NF-κB p65(P<0.05),the levels of GSH,the activity of SOD and the protein expressions of Bcl-2,Nrf2 and HO-1(P<0.05).CONCLUSION Being an inhibitor of oxidative stress and inflammatory response,Zhuangyao Shuanglu Tongnao Formula can alleviate brain injury in rats with cerebral ischemia reperfusion injury through the inhibition of neuronal apoptosis and improvement of neural function mediated by the inhibition of TLR4/NF-κB signal pathway and activation of Nrf2/HO-1 signal pathway.

16.
Article in Chinese | WPRIM | ID: wpr-1030498

ABSTRACT

Objective To investigate the effect of dioscin on uric acid(UA)-induced oxidative stress injury of human renal tubular epithelial cells(HK-2)and its molecular mechanism.Methods HK-2 cells were cultured and divided into four groups:blank group(normal group),model group(uric acid-stimulation modeling),condition control group(UA+DMSO)and dioscin group(UA+dioscin).Oxidative stress injury model was induced by UA in HK-2 cells.Cells viability was detected by CCK-8.ROS level was detected by flow cytometry.Real-time PCR was used to detect the expressions of glycogen synthase kinase 3β(GSK3β),nuclear factor erythroid 2-related factor 2(Nrf2)and heme oxygenase 1(HO-1)at mRNA level,and Western Blot was used to detect the expressions of phosphorylated glycogen synthesis kinase 3β(p-GSK3β),GSK3β,Nrf2 and HO-1 at protein level.Results After stimulation by UA,HK-2 cells viability was obviously decreased,and ROS level was significantly increased(all P<0.001).When treated with dioscin,HK-2 cells viability was obviously increased,and the ROS level of HK-2 cells was significantly decreased(all P<0.001).The expressions of Nrf2 and HO-1 decreased at the protein and mRNA levels after stimulation with UA.But the expressions of Nrf2 and HO-1 significantly increased after treated with dioscin(all P<0.001).Compared with the blank group,the p-GSK3β/GSK3β ratio in the model group decreased significantly at the protein level,but the p-GSK3β/GSK3β ratio increased after treated with dioscin(all P<0.001).Conclusion Dioscin can alleviate UA-induced oxidative stress injury in HK-2 cells.The mechanism might be that dioscin can promote phosphorylation of GSK3β,and activate Nrf2/HO-1 pathway.

17.
China Pharmacy ; (12): 1209-1214, 2024.
Article in Chinese | WPRIM | ID: wpr-1030846

ABSTRACT

OBJECTIVE To investigate the in vitro anti-inflammatory effects and mechanisms of oblongifolins A (OA) extracted from Garcinia oblongifolia. METHODS RAW264.7 cells were used as the research subject and divided into control group (0.5% DMSO), lipopolysaccharide (LPS) group (1 μg/mL), DEX group (10 µmol/L DEX+1 μg/mL LPS), and low-, medium-, and high-concentration groups of OA (7.5, 15, 30 µmol/L OA+1 μg/mL LPS). Except for the control group, the remaining groups were first stimulated with LPS for 1 hour and then mixed with drugs for 24 hours. The morphological changes of cells were observed in each group. The contents of nitric oxide (NO), reactive oxygen species (ROS), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1β, IL-4 and IL-10 were detected in cells of each group; mRNA expression levels of TNF-α, IL-6 and IL-1β were measured. The expression of key proteins in the nuclear factor κB (NF-κB) and nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathways in each group, as well as the nuclear translocation of NF-κB p65 and Nrf2 proteins in control group, LPS group and OA high-concentration group, were detected. RESULTS Compared to the LPS group, the number of spindle-shaped and irregular cells gradually decreased in OA groups, the contents of NO, ROS (except for OA low-concentration group), TNF-α, IL-6 and IL-1β, the mRNA expressions of TNF-α, IL-6 (except for OA low-concentration group) and IL-1β as well as the protein expressions of phosphorylated NF-κB p65 (p-NF-κB p65), p-IκBα, and Kelch-like ECH-associated protein 1 (Keap1) were decreased significantly (P<0.05). The contents of IL-4 and IL-10, protein expressions of IκBα, Nrf2 (except for OA low- and medium-concentration groups), HO-1 (except for OA low-concentration group) and NQO1 were all increased significantly (P<0.05). OA of high concentration could inhibit NF-κB p65 protein nuclear translocation and promote Nrf2 protein nuclear translocation. CONCLUSIONS OA can suppress LPS-induced inflammation in RAW264.7 macrophages. The underlying molecular mechanism likely entails the inhibition of the NF-κB signaling pathway, the activation of the Nrf2 signaling pathway and the reduction of ROS and inflammatory factor release.

18.
Article in English | WPRIM | ID: wpr-1030980

ABSTRACT

@#Objective: To evaluate the effects of Capsosiphon fulvescens (C. fulvescens) ethanolic extract on inflammation in lipopolysaccharide (LPS)-induced RAW296.7 macrophages. Methods: The protective effects of C. fulvescens ethanolic extract on LPS-induced inflammation in RAW264.7 macrophages were assessed using biochemical analysis, including enzyme-linked immunosorbent assay, quantitative reverse transcription-polymerase chain reaction, and Western blot analysis. To examine reactive oxygen species (ROS) production, flow cytometry analysis, and immunofluorescence staining were used. Furthermore, the modulatory effect of C. fulvescens ethanolic extract on NF-κB activation was investigated. Results: C. fulvescens ethanolic extract significantly attenuated LPS-induced levels of pro-inflammatory cytokines and notably reduced the secretion and mRNA levels of LPS-mediated matrix metalloproteinases. In addition, C. fulvescens ethanolic extract decreased ROS production and suppressed the TLR4/NF-κB signaling pathway. Conclusions: C. fulvescens ethanolic extract alleviates inflammation as well as oxidative stress by modulating the TLR4/NF-κB signaling in LPS-induced RAW264.7 macrophages. C. fulvescens can be used as a potential therapeutic agent to suppress inflammation and oxidative stress-associated diseases.

19.
Article in Chinese | WPRIM | ID: wpr-1031679

ABSTRACT

Objective @# To investigate the impact of dexmedetomidine on the oncological behavior of hepatocellular carcinoma and explore the role of NF-E2-related factor 2 (Nrf2) at both in vitro and in vivo levels.@*Methods @# In vivo experiment,Male C57BL/6J mice were randomly divided into a control group ( Ctrl group) ,a hepatocellular carcinoma group ( HCC group) ,and a hepatocellular carcinoma + dexmedetomidine group ( HCC + Dex group) . Hepatocellular carcinoma was induced in mice by combining N-Nitrosodiethylamine ( DEN) / carbon tetrachloride ( CCl4 ) ,followed by daily intraperitoneal injection of 10% dexmedetomidine for two weeks.After feeding the mice for one month,the mice were assessed for the quantity and size of liver tumors.The proliferation ability of liver cancer was evaluated using Ki67 immunohistochemistry.Additionally,the expression level of Nrf2 protein in tumor tissue was measured through immunofluorescence.In vitro experiment,Hepa1-6 cells were incubated with different concentrations of dexmedetomidine (0. 1,1,5 nmol /L) for 48 hours to examine their effects.The proliferation, migration and invasion abilities of Hepa1-6 cells were evaluated using the MTT and Transwell methods.The expres- sion level of Nrf2 protein in the Hepa1-6 cells was measured using Western blot and immunofluorescence.Addition- ally,the proliferation ,migration and invasion abilities of cells were assessed after Nrf2 knockdown via si-RNA transfection,in combination with incubation with 1 nmol /L dexmedetomidine for 48 hours. @*Results @#ompared to the HCC group,the anatomical examination results revealed an increase in the number of liver tumors and the lon- gest diameter in the HCC + Dex group (P <0. 05) . Ki67 immunohistochemistry results indicated the number of Ki67 positive cells in liver cancer tissue increased in the HCC + Dex group (P<0. 01) .The immunofluorescence assay demonstrated an upregulation of Nrf2 expression level in the HCC + Dex group (P <0. 05 ) . MTT results showed that 1 nmol /L of dexmedetomidine increased the cell viability of Hepa1-6 cells (P<0. 05) .Transwell re- sults indicated that 0. 1 ,1 ,and 5 nmol /L of dexmedetomidine enhanced the invasive ability of Hepa1-6 cells, while 0. 1 and 1 nmol /L of dexmedetomidine enhanced the migration ability (P<0. 05) .Western blot and immu- nofluorescence results showed an upregulation of Nrf2 expression level in cells after treatment with 1 nmol /L dexme- detomidine (P<0. 01) .The Nrf2 expression level of cells was reduced using si-RNA,followed by treatment with 1 nmol /L dexmedetomidine.The results from MTT and Transwell assays revealed a decrease in the viability,invasion and migration ability of Hepa1-6 cells (P<0. 01) .@*Conclusion @# Dexmedetomidine may enhance the proliferation, invasion and migration capacity of hepatocellular carcinoma by upregulating the expression of Nrf2 .

20.
China Pharmacy ; (12): 1334-1338, 2024.
Article in Chinese | WPRIM | ID: wpr-1031709

ABSTRACT

OBJECTIVE To investigate the effect of dioscin on renal injury in septic rats and its possible mechanism. METHODS The septic rat model was induced by using cecal ligation and puncture. Sixty model rats were randomly divided into model group (0.5% sodium carboxymethyl cellulose solution), dioscin low-dose, medium-dose and high-dose groups (30, 60, 120 mg/kg) and dexamethasone group (positive control, 10 mg/kg), with 12 rats per group; another 12 rats were selected as the sham operation group (0.5% sodium carboxymethyl cellulose solution). After 15 minutes of modeling, rats in each group were injected with medicine/0.5% sodium carboxymethyl cellulose solution via the tail vein. Twenty-four hours after administration, the levels of creatinine (Cr), blood urea nitrogen (BUN), neutrophil gelatinase associated lipocalin (NGAL), kidney injury molecule-1 (KIM- 1), interleukin 6 (IL-6), IL-1β and tumor necrosis factor-α (TNF-α) in serum and malondialdehyde (MDA) in renal tissue, superoxide dismutase (SOD) activity and the protein expressions of nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), NOD-like receptor protein 3 (NLRP3) were detected; renal histomorphology was observed. RESULTS Compared with model group, pathological injury of renal tissue was improved significantly in dioscin low-dose, medium-dose and high-dose groups; the levels of Cr, BUN, NGAL, KIM-1, IL-6, IL-1β and TNF-α in serum, MDA level and protein expression of NLRP3 in renal tissue were decreased significantly (P<0.05); SOD activity in renal tissue, protein expressions of Nrf2 and HO-1 were increased significantly (P<0.05), in a dose-dependent manner (P<0.05). The pathological damage of renal tissue in the dioscin high-dose group was similar to dexamethasone group, and there was no statistically significant difference in the levels of the above indicators (P>0.05). CONCLUSIONS Dioscin can activate the Nrf2/HO-1 signaling pathway to inhibit NLRP3 inflammasome, and realize the inhibition of inflammatory factors and oxidative stress, so as to protect the kidney injury in sepsis.

SELECTION OF CITATIONS
SEARCH DETAIL