ABSTRACT
SUMMARY: Overexpression of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in various tumor tissues and cell lines was found to promote tumor cell proliferation, migration, and invasion. However, the role of MALAT1 in gastric cancer (GC) is still unclear. We aimed to investigate the correlation between long-chain non-coding RNAs (lncRNAs), MALAT1, MicroRNAs (miRNA) and vascular endothelial growth factor A (VEGFA) in gastric cancer and to disclose underlying mechanism. The correlation between MALAT1 levels and clinical features was analyzed by bioinformatics data and human samples. The expression of MALAT1 was down regulated in AGS cells to detect the cell proliferation, migration, and invasion characteristics, as well as the effects on signal pathways. Furthermore, we validated the role of MALAT1/miR-330-3p axis in GC by dual luciferase reporter gene assays. Expression of MALAT1 was higher in cancer tissues than in para-cancerous tissues. The high MALAT1 level predicted malignancy and worse prognosis. Down-regulation of MALAT1 expression in AGS cells inhibited cell proliferation, migration, and invasion by targeting VEGFA. By dual luciferase reporter gene assay and miR-330-3p inhibitor treatment, we demonstrate that MALAT1 sponged miR-330-3p in GC, leading to VEGFA upregulation and activation of the mTOR signaling pathway. The MALAT1/miR-330-3p axis regulates VEGFA through the mTOR signaling pathway and promotes the growth and metastasis of gastric cancer.
Se descubrió que la sobreexpresión del transcrito 1 de adenocarcinoma de pulmón asociado a metástasis (MALAT1) en varios tejidos tumorales y líneas celulares promueve la proliferación, migración e invasión de células tumorales. Sin embargo, el papel de MALAT1 en el cáncer gástrico (CG) aún no está claro. Nuestro objetivo fue investigar la correlación entre los ARN no codificantes de cadena larga (lncRNA), MALAT1, los microARN (miARN) y el factor de crecimiento endotelial vascular A (VEGFA) en el cáncer gástrico y revelar el mecanismo subyacente. La correlación entre los niveles de MALAT1 y las características clínicas se analizó mediante datos bioinformáticos y muestras humanas. La expresión de MALAT1 se reguló negativamente en las células AGS para detectar las características de proliferación, migración e invasión celular, así como los efectos sobre las vías de señales. Además, validamos el papel del eje MALAT1/miR- 330-3p en GC mediante ensayos de genes indicadores de luciferasa dual. La expresión de MALAT1 fue mayor en tejidos cancerosos que en tejidos paracancerosos. El alto nivel de MALAT1 predijo malignidad y peor pronóstico. La regulación negativa de la expresión de MALAT1 en células AGS inhibió la proliferación, migración e invasión celular al apuntar a VEGFA. Mediante un ensayo de gen indicador de luciferasa dual y un tratamiento con inhibidor de miR-330-3p, demostramos que MALAT1 esponjaba miR-330-3p en GC, lo que lleva a la regulación positiva de VEGFA y la activación de la vía de señalización mTOR. El eje MALAT1/miR-330-3p regula VEGFA a través de la vía de señalización mTOR y promueve el crecimiento y la metástasis del cáncer gástrico.
Subject(s)
Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Vascular Endothelial Growth Factor A , TOR Serine-Threonine Kinases , RNA, Long Noncoding , RNA/genetics , Signal Transduction , Gene Expression Regulation, Neoplastic , Cell Movement , Blotting, Western , Apoptosis , Genes, Reporter , Cell Proliferation , Real-Time Polymerase Chain Reaction , Neoplasm InvasivenessABSTRACT
Ulcerative colitis (UC) is a difficult intestinal disease characterized by inflammation, and its mechanism is complex and diverse. Angiopoietin-like protein 2 (ANGPT2) plays an important regulatory role in inflammatory diseases. However, the role of ANGPT2 in UC has not been reported so far. After exploring the expression level of ANGPT2 in serum of UC patients, the reaction mechanism of ANGPT2 was investigated in dextran sodium sulfate (DSS)-induced UC mice. After ANGPT2 expression was suppressed, the clinical symptoms and pathological changes of UC mice were detected. Colonic infiltration, oxidative stress, and colonic mucosal barrier in UC mice were evaluated utilizing immunohistochemistry, immunofluorescence, and related kits. Finally, western blot was applied for the estimation of mTOR signaling pathway and NLRP3 inflammasome-related proteins. ANGPT2 silencing improved clinical symptoms and pathological changes, alleviated colonic inflammatory infiltration and oxidative stress, and maintained the colonic mucosal barrier in DSS-induced UC mice. The regulatory effect of ANGPT2 on UC disease might occur by regulating the mTOR signaling pathway and thus affecting autophagy-mediated NLRP3 inflammasome inactivation. ANGPT2 silencing alleviated UC by regulating autophagy-mediated NLRP3 inflammasome inactivation via the mTOR signaling pathway.
ABSTRACT
ABSTRACT Background: Adriamycin (ADM) resistance remains an obstacle to gastric cancer chemotherapy treatment. Objective: The objective of this study was to study the role and mechanism of transcription factor E2F7 in sensitivity to ADM chemotherapeutic agents in gastric cancer. Methods: Cell viability and cell sensitivity were assessed by CCK-8 and IC50 values of ADM were calculated. The impact of ADM on cellular proliferative capacity was assessed through colony formation assay. The binding relationship between E2F7 and PKMYT1 was then verified by dual luciferase assay and chromatin immunoprecipitation assay. ERK1/ERK2 and p-ERK1/p-ERK2 protein expression levels were detected by western blot. Results: In both gastric cancer tissue and ADM-resistant cells, a conspicuous upregulation of E2F7 and PKMYT1 was observed. Upregulated PKMYT1 was notably enriched in the MAPK signaling pathway. Enhanced levels of E2F7 were shown to not only drive gastric cancer cell proliferation but also engender a reduction in the sensitivity of these cells to ADM. Furthermore, PKMYT1 emerged as a downstream target of E2F7. Activation of E2F7 culminated in the transcriptional upregulation of PKMYT1, and silencing E2F7 reversed the inhibitory impact of PKMYT1 overexpression on ADM sensitivity in gastric cancer cells. Conclusion: E2F7/PKMYT1 axis might promote the proliferation and partially inhibit ADM sensitivity of gastric cancer cells by activating the MAPK pathway.
ABSTRACT
High-altitude hypoxia exposure can lead to phospholipase D-mediated lipid metabolism disorder in spleen tissues and induce ferroptosis. Nonetheless, the key genes underlying hypoxia-induced splenic phospholipase D and the ferroptosis pathway remain unclear. This study aimed to establish a hypoxia animal model. Combined transcriptomic and proteomic analyses showed that 95 predicted target genes (proteins) were significantly differentially expressed under hypoxic conditions. Key genes in phospholipase D and ferroptosis pathways under hypoxic exposure were identified by combining Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis techniques. Gene set enrichment analysis (GSEA) showed that the differential gene sets of the phospholipase D and ferroptosis signaling pathways were upregulated in the high-altitude hypoxia group. The genes in the phospholipase D signalling pathway were verified, and the expression levels of KIT and DGKG were upregulated in spleen tissues under hypoxic exposure. Subsequently, the mRNA and protein expression levels of genes from the exogenous pathway such as TFRC, SLC40A1, SLC7A11, TRP53, and FTH1 and those from the endogenous pathway such as GPX4, HMOX1, and ALOX15 differentials in the ferroptosis signalling pathway were verified, and the results indicated significant differential expression. In summary, exposure to high-altitude hypoxia mediated phospholipid metabolism disturbance through the phospholipase D signalling pathway and further induced ferroptosis, leading to splenic injury.
ABSTRACT
Previous studies show that glycogen synthase kinase 3β (GSK3B) plays an important role in tumorigenesis. However, its role in cervical cancer is unclear. The present study silenced GSK3B with siRNAs and/or chemical inhibitors to determine its role in HeLa cervical cancer cell proliferation and migration as well as in xenograft tumor growth. Cell Counting Kit (CCK)-8 and 5-ethynyl-2'-deoxyuridine (EdU) assays were used to determine cell survival and proliferation. Scratch and Transwell® assays were used to evaluate cell migration. Xenograft tumors were used to evaluate the effect of GSK3B on tumor growth. Transcriptomic sequencing was used to clarify the mechanisms underlying the foregoing processes. Public databases and clinical specimens showed that GSK3B was upregulated in cervical cancer tissues and correlated with poor prognosis. In vitro experiments indicated that GSK3B inhibition reduced cell viability, proliferation, and migration. In vivo experiments demonstrated that GSK3B inhibition slowed xenograft tumor growth. Transcriptomic sequencing revealed that GSK3B inhibition modulated the phosphatidylinositol 3-carboxykinase (PI3K)/protein kinase B (Akt) and extracellular matrix (ECM)-receptor interaction signaling pathways. GSK3B inhibition decreased the protein levels of phosphorylated PI3K and Akt and the levels of mesenchymal markers but increased those of epithelial markers. An activator of the PI3K/Akt signaling pathway counteracted the suppressive effects of GSK3B inhibition on HeLa cell viability and proliferation and on PI3K/Akt signaling. Our data suggested that GSK3B regulated cervical cancer cell proliferation and migration by modulating the PI3K/Akt signaling pathway and epithelial-to-mesenchymal transition (EMT).
ABSTRACT
OBJECTIVE To investigate the improvement effects of Runchang granules on the constipation in mice and its potential mechanism. METHODS The mice were randomly divided into normal control group, model group, Runchang granules low-dose and high-dose groups (5, 10 g/kg), mosapride group (0.003 g/kg, positive control), with 6 mice in each group. The latter 4 groups were given loperamide intragastrically (0.004 g/kg), twice a day, for 3 consecutive days. Normal control group and model group were given purified water intragastrically, and administration groups were given relevant medicine intragastrically for 7 consecutive days. After the last medication, fecal moisture content and intestinal motility of mice were determined, while the structures of colon and ileum, and the secretion of colonic mucus were observed. Protein expressions of tyrosine kinase receptor (c-kit), mucin 2 (MUC2) and stem cell factor (SCF) were determined in colon; meanwhile, the mRNA expression levels of inflammatory factors [tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1β, inducible nitric oxide synthase (iNOS)] as well as factors related to promoting intestinal motility [neuronal nitric oxide synthase (nNOS), smooth muscle myosin light chain kinase (smMLCK), 5-hydroxytryptamine 4 receptor (5-HT4R), MUC2, SCF, c-kit] were determined. RESULTS Compared with model group, the fecal water content, intestinal propulsion rate, protein expression of c-kit in colon, relative expressions of MUC2 and SCF protein, and mRNA expressions of factors related to promoting intestinal motility (except for nNOS and SCF in Runchang granules low-dose group) were all increased significantly in Runchang granules low-dose and high-dose groups, and mosapride group (P<0.05 or P<0.01). mRNA expression levels of inflammatory factors were decreased significantly(P<0.05 or P<0.01). Both colon and ileum injuries improved, and the secretion of colon mucus was increased significantly in Runchang granules high-dose group (P<0.01). CONCLUSIONS Runchang granules have laxative effect and can improve constipation in mice, and its mechanism may be related to the promotion of the secretion of colon mucus and MUC2 expression, and the activation of SCF/c-kit signaling pathway.
ABSTRACT
OBJECTIVE To investigate the effects of anlotinib on the malignant phenotype of glioma cells by regulating the nuclear factor-κB (NF-κB) signaling pathway. METHODS Human glioma T98G cells were cultured in vitro, and 5-fluorouracil was used as positive control to investigate the effects of different concentrations of anlotinib (5, 10, 20 μmol/L) on the ability of proliferation, adhesion, migration and invasion, the expressions of epithelial-mesenchymal transition (EMT) related proteins [E-cadherin, N-cadherin, vimentin and fibronectin (FN)]. NF- κB signaling pathway inhibitor (BAY 11-7082) and activator (prostratin) were additionally used to verify the possible mechanism of the above effects of anlotinib. RESULTS Anlotinib with 5, 10, 20 μmol/L could significantly decrease the activity of cell proliferation (except for 5 μmol/L anlotinib group), migration rate, and the number of adherent cells and invasive cells, could significantly up-regulate the expression of E-cadherin protein while down-regulate the expressions of N-cadherin, vimentin and FN protein (P<0.05); the effect of 20 μmol/L anlotinib was similar to that of positive control (P>0.05). Compared with 10 μmol/L anlotinib, pathway inhibitor could significantly decrease the ability of proliferation, adhesion, migration and invasion, and the expressions of N-cadherin, vimentin, FN and phosphorylated NF-κB p65 protein, while could significantly up-regulate the expression of E-cadherin protein (P<0.05); above indexes were reversed significantly by pathway activator (P<0.05). CONCLUSIONS Anlotinib may inhibit the proliferation, adhesion, migration and invasion of human glioma T98G cells, which may be associated with the inhibition of the NF-κB signaling pathway, thus inhibiting cell EMT-like processes.
ABSTRACT
ObjectiveTo explore the effect of Buzhong Yiqitang on the immune imbalance of helper T cell 17 (Th17)/regulatory T cell (Treg) and Notch1 signaling pathway in mice with autoimmune thyroiditis (AIT). MethodA total of 60 8-week-old NOD.H-2h4 mice were randomly divided into the normal group, model group, western medicine group (selenium yeast tablet, 32.5 mg·kg-1), and low-dose (4.78 g·kg-1·d-1), middle-dose (9.56 g·kg-1·d-1), and high-dose (19 g·kg-1·d-1) Buzhong Yiqitang groups, with 10 mice in each group. The normal group was fed with distilled water, and the other groups were fed with water containing 0.05% sodium iodide for eight weeks. After the animal model of AIT was formed spontaneously, the mice were killed under anesthesia after intragastric administration for eight weeks. Serum anti-thyroglobulin antibodies (TGAb), thyroid-stimulating hormone (TSH), free triiodothyronine (FT3), and free thyroid hormone (FT4) were detected by enzyme-linked immunosorbent assay (ELISA), and thyroid tissue changes were observed by hematoxylin-eosin (HE) staining. The mRNA and protein expressions of retinoid-related orphan receptor-γt (RORγt), interleukin (IL)-17, forkhead box P3 (FoxP3), IL-10, Notch1, and hair division-related enhancer 1 (Hes1) in thyroid tissue were detected by Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot, respectively. ResultCompared with the normal group, the thyroid structure of the model group was severely damaged, and lymphocytes were infiltrated obviously. The levels of serum TGAb, FT3, and FT4 contents were significantly increased, and TSH content was significantly decreased (P<0.01). The mRNA and protein expression levels of RORγt, IL-17, Notch1, and Hes1 were significantly increased, while those of FoxP3 and IL10 were significantly decreased in the model group (P<0.01). Compared with the model group, thyroid structural damage and lymphocyte infiltration were improved in the treatment groups, and serum TGAb, FT3, and FT4 contents were significantly decreased. TSH content was increased, and mRNA and protein expression levels of RORγt, IL-17, Notch1, and Hes1 were decreased. mRNA and protein expression levels of FoxP3 and IL-10 were increased to different degrees (P<0.05, P<0.01), and the middle-dose Buzhong Yiqitang group had the most significant intervention effect. ConclusionBuzhong Yiqitang can alleviate the thyroid structural damage in AIT mice, and its mechanism may be related to improving the abnormal differentiation of Th17/Treg immune cells and inhibiting the activation of the Notch1 signaling pathway.
ABSTRACT
ObjectiveTo observe the effects of the South African herb Hoodia gordonii (HG) on glucolipid metabolism in diabetic db/db mice and explore the possible mechanisms of HG on the liver of db/db mice based on the phosphoinositide-3 kinase (PI3K)/protein kinase B (Akt)/factor forkhead protein O1 (FoxO1) signaling pathway. MethodA total of 30 db/db mice were randomly divided into five groups according to fasting blood glucose: model group, metformin group (0.195 g·kg-1), and low dose (0.39 g·kg-1), medium dose (0.78 g·kg-1), and high dose (1.56 g·kg-1) HG groups, with six m/m mice in each group, and another six m/m mice were set as normal group. The mice in the normal and model groups were given saline of 9 mL·kg-1 by gavage. Body weight, water intake, and fasting blood glucose of the mice in each group were measured weekly. After six weeks of continuous administration, serum insulin (FINS), low-density lipoprotein cholesterol (LDL), total cholesterol (TC), triglyceride (TG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), urea, and creatinine (CREA) were measured, and liver sections were embedded and stained with hematoxylin-eosin (HE), periodic acid-Schiff (PAS), and oil red O. Protein expression of PI3K p85, p-Akt, and p-FoxO1 in liver was detected by immunohistochemistry. The mRNA expression of PI3K, Akt, and FoxO1 in liver tissue was detected by real-time polymerase chain reaction (Real-time PCR). ResultAfter six weeks of administration intervention, it was found that fasting blood glucose was significantly downregulated in mice in the three HG groups (P<0.05). The level of islet resistance index was significantly reduced in both the low and medium dose HG groups (P<0.05). The expression levels of TC, TG, and LDL were reduced in all HG groups (P<0.05, P<0.01). Pathologically, HG could alleviate hepatocyte steatosis, reduce the volume and content of lipid droplets in liver, and increase the distribution of glycogen granules in liver to some extent in mice. Immunohistochemical assays revealed that PI3K p85 protein expression was significantly increased in the low, medium, and high dose HG groups compared with the model group (P<0.01). p-Akt protein expression was significantly increased in the medium and high dose HG groups (P<0.05, P<0.01). p-FoxO1 protein expression was significantly increased in the low, medium, and high dose HG groups (P<0.05, P<0.01). Compared with the model group, PI3K mRNA was increased in low dose, medium dose, and high dose HG groups (P<0.05), and Akt mRNA was increased in high dose HG group (P<0.05). FoxO1 mRNA was decreased in low dose, medium dose, and high dose HG groups (P<0.05). ConclusionHG can ameliorate the disorder of glucolipid metabolism in db/db mice, which may be related to its activation of the hepatic PI3K/Akt/FoxO1 signaling pathway.
ABSTRACT
ObjectiveThe antitumor activity of sesquiterpenoid M36 isolated from Myrrha against human hepatoma HepG2 cells was investigated in this study. MethodHepG2 cells were treated with M36 at different concentrations (0, 2, 4, 6, 8, 10 μmol·L-1). Firstly, the effects of M36 on the proliferation of human hepatoma HepG2 cells were detected by methyl thiazolyl tetrazolium (MTT), colony formation assay, and EdU proliferation assay. Hoechst staining, flow cytometry analysis, and Western blot were used to explore the effect of M36 on the apoptosis of human hepatoma HepG2 cells. Acridine orange staining and western blotting were used to examine the effect of M36 on autophagy in HepG2 cells. Finally, Western blot was used to detect protein expression of cancer-related signaling pathways. ResultCompared with the blank group, M36 treatment significantly inhibited the proliferation of human hepatoma HepG2 cells (P<0.01), and the half inhibitory concentration (IC50) value of M36 for 48 h was 5.03 μmol·L-1, in a dose- and time-dependent manner. M36 was also able to induce apoptosis and autophagy in human hepatoma HepG2 cells. After treatment with 8 μmol·L-1 M36 for 48 hours, the apoptosis rate of HepG2 cells was (42.03±9.65)% (P<0.01). Compared with the blank group, HepG2 cells treated with 4 and 8 μmol·L-1 M36 for 48 h had a significant increase in cleaved poly ADP-ribose polymerase (cleaved-PARP) protein levels (P<0.01). Acridine orange staining showed that autophagy was significantly activated in HepG2 cells treated with 4 and 8 μmol·L-1 M36 for 48 h compared with the blank group (P<0.01), which was further verified by the up-regulation of microtubule-associated protein 1 light chain 3 Ⅱ (LC3 Ⅱ). Western blot results showed that compared with the blank group, the levels of phosphorylated extracellular regulated protein kinase (p-ERK), phosphorylated p38 mitogen-activated protein kinase (p-p38 MAPK), phosphorylated c-Jun N-terminal kinase (p-JNK), and its downstream nuclear transcription factors c-Jun and p-c-Jun protein were significantly increased in M36 group (P<0.05, P<0.01). The mechanism may be related to the up-regulation of MAPK signaling pathway. ConclusionThe sesquiterpenoid M36 isolated from Myrrha inhibits the proliferation of human hepatoma HepG2 cells and promotes apoptosis and autophagy, which may be related to the activation of the MAPK signaling pathway.
ABSTRACT
ObjectiveBased on ultra performance liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS), to evaluate the establishment of a mouse model of liver Yin deficiency by thyroid tablet suspension combined with 10% carbon tetrachloride(CCl4) from the perspective of non-targeted metabolomics, in order to lay the foundation for the establishment of a traditional Chinese medicine(TCM) syndrome model. MethodA total of 24 mice were randomly divided into blank group and model group. The model group was given thyroid tablet suspension(0.003 2 g·kg-1) by gavage for 14 consecutive days, and 10% CCl4(5 mL·kg-1) was intraperitoneally injected once a week to establish a liver Yin deficiency model, while the blank group was injected with an equal amount of olive oil intraperitoneally and gavaged with an equal amount of distilled water, and was fed with normal feed. After the modeling was completed, 6 mice in each group were randomly selected, the levels of alanine aminotransferase(ALT), aspartate aminotransferase(AST), cyclic adenosine monophosphate(cAMP), cyclic guanosine monophosphate(cGMP), interleukin(IL)-6, IL-10, tumor necrosis factor-α(TNF-α)were measured in the mice serum, and malondialdehyde(MDA), superoxide dismutase(SOD), total protein(TP), hydroxyproline(HYP) and other indicators were measured in the mice liver. Liver tissue sections were taken for hematoxylin-eosin(HE) staining and observing pathological changes. The remaining 6 mice in each group were subjected to UPLC-Q-TOF-MS combined with principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to screen differential metabolites in the liver Yin deficiency mouse model, Kyoto Encyclopedia of Genes and Genomes(KEGG) database was used to analyze the corresponding metabolic pathways of differential metabolites. ResultCompared with the blank group, mice in the model group showed liver Yin deficiency manifestations such as reduced body weight, fatigue and sleepiness, disheveled and lusterless hair, irritability. The levels of ALT, cAMP/cGMP, IL-6, AST, MDA, cAMP, TNF-α significantly increased(P<0.05, P<0.01), while the levels of SOD, IL-10 and cGMP significantly decreased(P<0.05, P<0.01), and the changes of HYP and TP were not statistically significant. Hepatic steatosis and distortion of the radial arrangement of the liver plate cells were seen in the section images of the model group, endogenous substances were clearly separated, and 252 differential metabolites were identified in the serum samples, which were mainly involved in the metabolic pathways of purine metabolism, steroid hormone biosynthesis and pyrimidine metabolism. A total of 229 differential metabolites were identified in the liver samples, mainly involving nucleotide metabolism, purine metabolism, steroid hormone biosynthesis, pyrimidine metabolism, antifolate resistance, insulin resistance, primary bile acid biosynthesis, prostate cancer, sulfur relay system, arachidonic acid metabolism and other metabolic pathways. ConclusionThe successful establishment of liver Yin deficiency model in mice by CCl4 combined with thyroid hormone is evaluated through the investigation of serum and liver metabolomics, combined with biochemical indicators, which provides a biological basis and experimental foundation for the Yin deficiency syndrome model of TCM.
ABSTRACT
As people's living standards improve, the development trend of diabetes has gradually become severe. Diabetes is a chronic inflammatory disease associated with abnormal expression of nuclear factor-kappa B (NF-κB) in patients. NF-κB exists in various tissue cells and participates in the regulation of a variety of genes related to immune function and inflammation. Varieties of factors can activate NF-κB when the body is stimulated by external factors, so as to produce inflammation and other reactions. Previous studies on NF-κB mainly focus on cancer, and the pathological mechanism of the treatment of diabetes by related signaling pathways and the progress of traditional Chinese medicine (TCM) treatment have not been systematically elaborated on. By referring to the relevant literature in China and abroad, it was found that NF-κB is not isolated in the development and progression of diabetes but is associated with signal molecules related to inflammation, oxidative stress, and energy metabolism, and it is involved in mediating inflammation, pancreatic β cell apoptosis, insulin signal transduction, and other physiological functions. Therefore, blocking the transmission of NF-κB signaling pathway is beneficial to the treatment of diabetes. At present, Western medicine for the treatment of diabetes mainly includes oral hypoglycemic drugs and insulin injections, but the adverse reactions are obvious. TCM has been characterized by multi-target, extensive action, and excellent curative effects in the treatment of diabetes. TCM and its compounds with functions of tonifying Qi and promoting blood circulation, regulating qi and eliminating phlegm, clearing heat and detoxifying, and nourishing Yin and moistening dryness can effectively intervene in the abnormal expression of NF-κB signaling pathway in vivo through anti-inflammatory effects. In this paper, the association between NF-κB signaling pathway and diabetes was summarized, and the modern research progress of TCM intervention of NF-κB signaling pathway in the treatment of diabetes in the past five years was reviewed, so as to lay a laboratory foundation for the study of a new pathological mechanism of diabetes based on NF-κB signaling pathway and provide new targets and research direction for the prevention and treatment of diabetes and development of related TCM.
ABSTRACT
Dilated cardiomyopathy (DCM) is characterized by the main pathological changes of global cardiac enlargement, especially left ventricular enlargement. Clinical manifestations include decreased heart function, arrhythmia, thromboembolism, and even sudden death. It is one of the refractory cardiovascular diseases. Conservative drug treatment is still the main approach in clinical practice, but due to its unavoidable side effects such as low blood pressure, it is often difficult to achieve a satisfactory prognosis. The combination of traditional Chinese medicine and Western medicine can effectively improve side effects and enhance efficacy. The research has found that nuclear transcription factors-κB (NF-κB), adenylate activated protein kinase (AMPK)/mammalian rapamycin target protein (mTOR), transforming growth factor-β (TGF-β)/Smads, Toll like receptors (TLR) 4/c-Jun amino terminal kinase (JNK), mitogen activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/protein kinase (Akt), and other signaling pathways play a crucial regulatory role in the occurrence and development of DCM. Traditional Chinese medicine can improve myocardial fibrosis, reverse ventricular remodeling, alleviate oxidative stress, and achieve anti-inflammatory and other effects by regulating the above signaling pathways, thus improving DCM. Due to its multi-target and multi-mechanism characteristics, it has the advantages of high safety and good tolerance and has become an important part of current clinical treatment.
ABSTRACT
Acute pancreatitis (AP) is a common clinical acute abdominal disease, which is characterized by acute onset, rapid development, severe disease, many complications, and high mortality rate. It can progress to severe AP (SAP) if not treated promptly in the early stage. The pathogenesis of AP is complex and involves multiple cellular and molecular levels. It is now clear that oxidative stress and reactive oxygen species (ROS) production are involved in the physiopathological process of AP, which is associated with a low quantity and activity of antioxidant enzymes in pancreatic cells. Nuclear factor E2-related factor 2 (Nrf2) serves as the ''golden key'' to maintain redox homeostasis in tissue cells and constitutes an important signaling pathway for antioxidant response and inflammation in vivo by collaborating with downstream antioxidant enzymes such as heme oxygenase-1 (HO-1). Traditional Chinese medicine has unique efficacy in treating diseases due to its multi-component, multi-target, multi-drug delivery, and multi-formulation characteristics. Based on the concept of synergy between traditional Chinese and Western medicine, traditional Chinese medicine is becoming a new craze in the treatment of AP. The level of oxidative stress and Nrf2/HO-1 signaling pathway in AP pancreatic tissue are in a dynamic change process, and the intervention of traditional Chinese medicine can clean ROS production, affect the inflammatory pathway, and reduce oxidative stress damage, so as to protect against pancreatic injury. This suggests that this pathway plays an important role in AP. This article reviews the recent literature on the regulation of the Nrf2/HO-1 signaling pathway by traditional Chinese medicine for AP and summarizes that the monomers of traditional Chinese medicine targeting this pathway are mainly heat-clearing and detoxifying, blood-activating and blood-stasis-removing, and Qi benefiting and middle warming, and the compounds of traditional Chinese medicine include Yinchenhao Decoction and QingYi Ⅱ, so as to provide a new direction for the prevention and treatment of AP and further drug development.
ABSTRACT
Objective@#To explore the molecular mechanism of resveratrol (RES) in the treatment of oral squamous cell carcinoma (OSCC) through the use of biological information methods such as network pharmacology and molecular docking and to provide a theoretical reference for the clinical application of RES in the treatment of OSCC.@*Methods@#The Swiss Target Prediction(http://www.swisstargetprediction.ch), SEA (http://sea.bkslab.org)database, and Pharm mapper database(http://lilab-ecust.cn) were used to retrieve RES-related targets, and the DISGENET (www.disgenet.org), OMIM (https://omim.org) and GeneCards (https://www.genecards.org) databases were used to screen OSCC disease targets. The intersection of drugs and disease targets was determined, and Cytoscape 3.7.2 software was used to construct a "drug-diseasetarget pathway" network. The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database was used to construct a target protein interaction network, and the DAVID database was used for enrichment analysis of key proteins. Finally, molecular docking validation of key proteins was performed using AutoDock and PyMOL. The enrichment analysis and molecular docking results were integrated to predict the possible molecular mechanisms of RES treatment in OSCC; western blot was used to determine the effect of resveratrol at different concentrations (50, 100) μmol/L on the expression of Src tyrosine kinase (SRC), epidermal growth factor receptor (EGFR), estrogen receptor gene 1 (ESR1), and phosphatidylinositol 3 kinase/protein kinase B (PI3K/AKT) signaling pathway proteins in OSCC HSC-3 cells.@*Results@#A total of 243 targets of RES drugs and 6 094 targets of OSCC were identified. A total of 116 potential common targets were obtained by intersecting drugs with disease targets. These potential targets mainly participate in biological processes such as in vivo protein self-phosphorylation, peptide tyrosine phosphorylation, transmembrane receptor protein tyrosine kinase signaling pathway, and positive regulation of RNA polymerase Ⅱ promoter transcription, and they interfere with the PI3K/AKT signaling pathway to exert anti-OSCC effects. The docking results of resveratrol with OSCC molecules indicated that key targets, such as EGFR, ESR1, and SRC, have good binding activity. The results of cell-based experiments showed that resveratrol inhibited the protein expression of SRC, EGFR, ESR1, p-PI3K, and p-AKT in HSC-3 cells in a dose-dependent manner.@*Conclusion@#RES can inhibit the expression of its targets EGFR, ESR1, SRC, p-PI3K, and p-AKT in OSCC cells.
ABSTRACT
ObjectiveTo explore the syndromes and mechanisms of depression induced by maternal separation (MS) combined with chronic restraint stress (RS) in mice. MethodOn postnatal day 0 (PD0), the offspring mice were randomized into a blank group (NC) and a modeling group. The mouse model of depression was established by MS+RS for 21 days. After removal of female mice on PD21, the modeled mice were randomized into model, Wenyang, Jieyu, Wenyang Jieyu, and fluoxetine groups, with 15 mice in each group. The sucrose preference, tail suspension, and open field tests were carried out to evaluate the anxiety and depression-like behavior in mice. Enzyme-linked immunosorbent assay was used to measure the adrenocorticotrophic hormone (ACTH) and corticosterone (CORT) levels in mouse plasma. High performance liquid chromatography-electrochemical detector was used to determine the content of monoamine neurotransmitters in the hippocampus. Real-time fluorescence quantitative polymerase chain reaction was employed to determine the mRNA levels of genes in the 5-hydroxytryptamine (5-HT) system, hypothalamic-pituitary-adrenal (HPA) axis, and brain-derived neurotrophic factor (BDNF) signaling pathway in the hippocampus. Immunohistochemistry was employed to determine the expression levels of proteins in the 5-HT system and HPA axis in the hippocampus. The Simple Western system was used to determine the protein levels of BDNF and tyrosine kinase receptor B (TrkB) in the hippocampus. ResultCompared with the NC group, the model group exhibited depression-like behavior, which was significantly relieved by Wenyang Jieyu prescription and fluoxetine. Compared with the NC group, the model group showed elevated levels of CORT and ACTH in the plasma (P<0.01), which, however, were lowered by Wenyang Jieyu prescription and fluoxetine (P<0.05, P<0.01). Compared with the NC group, the model group showed inhibited expression of neurotransmitters in the hippocampus (P<0.05, P<0.01), while Wenyang Jieyu prescription and fluoxetine restored the expression of neurotransmitters (P<0.05, P<0.01). Compared with NC group, the model group showed inhibition of the 5-HTergic nerve and abnormal activation of the HPA axis, and Wenyang Jieyu prescription and fluoxetine regulated the abnormal state of the 5-HTergic nerve and HPA axis. Compared with NC group, the modeling down-regulated the mRNA and protein levels of BDNF and TrkB in the hippocampus (P<0.05, P<0.01), which, however, were recovered in Wenyang, Jieyu, Wenyang Jieyu, and fluoxetine groups (P<0.05, P<0.01). ConclusionThe mouse model of depression induced by MS+RS may present the syndrome of Yang deficiency and liver depression. Wenyang Jieyu prescription may increase the content of hippocampal neurotransmitters by regulating the 5-HT system and the BDNF signaling pathway mediated by the HPA axis, thereby alleviating depression-like behavior in mice.
ABSTRACT
ObjectiveTo explore the mechanism of Wenyang Jieyu prescription in regulating hippocampal neuron apoptosis and improving synaptic plasticity in the mouse model of depression induced by maternal separation combined with restraint stress. MethodThe mice on postnatal day 0 (PD0) were randomly assigned into a control group (n=10) and a modeling group (n=50). Maternal separation combined with restraint stress was adopted to establish the mouse model of depression, and the modeled mice were randomized into model, Wenyang prescription, Jieyu prescription, Wenyang Jieyu prescription, and fluoxetine groups (n=10) on the weaning day (PD21). From PD21 to PD111, the mice were fed with the diets mixed with corresponding medicines. The sucrose preference test, open field test, O-maze test, and novel object recognition test were then conducted to evaluate the depression, memory, and learning abilities of mice. Immunohistochemistry (IHC) was employed to measure the atomic absorbance (AA) of postsynaptic density protein 95 (PSD95) in the hippocampus. Terminal-deoxynucleoitidyl transferase-mediated nick-end labeling (TUNEL) was employed to detect the apoptosis of hippocampal neurons. Western blot was employed to determine the protein levels of brain-derived neurotrophic factor (BDNF), phosphorylated tyrosine kinase receptor B/tyrosine kinase receptor B (p-TrkB/TrkB), phosphorylated protein kinase B/protein kinase B (p-Akt/Akt), phosphorylated mammalian target of rapamycin/mammalian target of rapamycin (p-mTOR/mTOR), B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X (Bax), cysteinyl aspartate-specific proteinase-3 (Caspase-3), synaptophysin (Syn), and PSD95. ResultCompared with the control group, the modeling decreased the sucrose preference rate, time spent in central zone within 5 min, total movement distance, time spent in the open arm, and cognition index (P<0.01). Furthermore, it decreased the expression of PSD95, increased the neuron apoptosis in the hippocampus (P<0.01), down-regulated the protein levels of BDNF, p-TrkB/TrkB, p-Akt/Akt, p-mTOR/mTOR, Bcl-2, PSD95, and Syn (P<0.01), and up-regulated the protein levels of Bax and Caspase-3 (P<0.05) in the hippocampus. Compared with the model group, Wenyang Jieyu prescription and fluoxetine increased the sucrose preference rate, time spent in central zone within 5 min, total movement distance, time spent in the open arm, and cognition index (P<0.05, P<0.01). Moreover, the drugs increased the expression of PSD95, reduced the neuron apoptosis (P<0.01), up-regulated the protein levels of BDNF, p-TrkB/TrkB, p-Akt/Akt, p-mTOR/mTOR, Bcl-2, PSD95, and Syn (P<0.01), and down-regulated the protein levels of Bax and Caspase-3 (P<0.01). ConclusionWenyang Jieyu prescription outperformed Wenyang prescription and Jieyu prescription in the treatment of the depressive behavior induced by maternal separation combined with restraint stress in mice. It exerted the therapeutic effect by reducing the hippocampal neuron apoptosis and improving the synaptic plasticity via the BDNF/Akt/mTOR pathway.
ABSTRACT
Cerebral ischemia/reperfusion injury (CIRI) is a complex cascade reaction process in which the blood flow and oxygen supply of brain tissue in the infarcted area recover after cerebral ischemia, resulting in secondary injury of ischemic brain tissue. At present, thrombolysis as soon as possible and restoration of cerebral blood supply are still the only strategies for the treatment of stroke, but a considerable number of patients' symptoms will be more serious after reperfusion, making patients face adverse outcomes such as neurological function injury and even death and seriously affecting the quality of life and safety of patients. Therefore, an in-depth exploration of the mechanism and treatment strategy of CIRI has important clinical significance. The phosphatidylinositol 3- kinase (PI3K)/protein kinase B (Akt) signaling pathway is one of the classic anti-apoptosis/reproductive-promoting signal transduction pathways, which is responsible for cell proliferation, growth, and differentiation. It is the key cascade signaling pathway of CIRI, located at the core site in many mechanisms such as mitochondrial disorder, apoptosis, autophagy, oxidative stress, and inflammation. It is closely related to the occurrence and development of CIRI. Traditional Chinese medicine has been used in the clinical treatment of stroke and its complications for thousands of years, and the clinical effect of traditional Chinese medicine in the prevention and treatment of CIRI has been affirmed by a large number of research results in recent years. It is further clarified that the monomers, active components, and their compound prescriptions of traditional Chinese medicine can directly or indirectly regulate the PI3K/Akt signaling pathway by virtue of the biological advantages of multi-targets, multi-components, and multi-pathways and play an overall protective role in CIRI. By analyzing the related research progress of traditional Chinese medicine in China and abroad in recent years, the authors summarized the role and mechanism of regulating the PI3K/Akt signaling pathway in the prevention and treatment of CIRI, so as to provide further theoretical basis for the study of the mechanism of clinical prevention and treatment of CIRI.
ABSTRACT
OBJECTIVE To explore the effect and mechanism of the alcoholic extract from Scabiosa comosa against hepatic fibrosis (HF). METHODS Intragastrical administration of carbon tetrachloride was given to induce HF model. By observing the pathological changes in liver tissue, mRNA and protein expressions of HF indexes [α-smooth muscle actin (α-SMA), collagen type Ⅰ] and phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway-related factors were detected, and the improvement effects and possible mechanism of low-dose, medium-dose and high-dose (50, 100, 200 mg/kg) of alcoholic extract from S. comosa on HF model rats were investigated. Drug-containing serum was prepared by intragastrical administration of alcoholic extract from S. comosa at a concentration of 1 800 mg/(kg·d) (calculated by the amount of raw material). The effects of drug- containing serum of alcoholic extract from S. comosa on the expression of miRNA-21 were observed through the intervention of HSC-T6 cells with low, medium and high concentrations of drug-containing serum of alcoholic extract from S. comosa (diluted to 10%, 15%, 20%). miRNA-21 mimics or inhibitors were used to transfect HSC-T6 cells, and the mRNA and protein expressions of factors related to the PI3K/Akt signaling pathway were detected. RESULTS The results of in vivo experiments showed that low, medium and high doses of alcoholic extract from S. comosa significantly ameliorated the histopathological changes in liver tissue of HF rats, and the percentage of collagen was significantly reduced (P<0.01); mRNA and protein expressions of the indicators related to HF as well as PI3K and Akt were significantly reduced (P<0.01), and mRNA and protein expressions of phosphatase and tensin homolog deleted on chromosome ten (PTEN) were increased in liver tissue of rats (P<0.01). The results of in vitro experiments showed that drug-containing serum of alcoholic extract from S. comosa significantly inhibited the expression of miRNA-21 at low, medium and high concentrations (P<0.01); whereas after transfection with miRNA-21 mimics, it was found that miRNA-21 mimics significantly increased mRNA and protein expressions of PI3K and Akt (P<0.01), while significantly decreased mRNA and protein expressions of PTEN (P<0.01); after transfection with miRNA-21 inhibitor, the changes of above indexes were opposite to the above results (P<0.01). CONCLUSIONS Alcoholic extracts of S. comosa may inhibit the PI3K/Akt signaling pathway by affecting the expression of miRNA-21, so as to achieve the effect of anti-hepatic fibrosis.
ABSTRACT
OBJECTIVE To investigate the effects of Setaria italica extract on improving insomnia model mice and to explore its potential mechanisms. METHODS The mice were randomly assigned into blank group, model group, positive control group (diazepam, 2.6 mg/kg), and S. italica extract low-dose, medium-dose and high-dose groups (1.2, 2.4, 4.8 g/kg), with 10 mice in each group. Except for the blank group, all other groups received intraperitoneal injection of para-chlorophenylalanine (PCPA) to establish the insomnia model. After modeling, the blank group and model group were given a constant volume of normal saline intragastrically, and administration groups were given relevant medicine intragastrically, with a volume of 0.01 mL/g, once a day, for 7 consecutive days. After the administration, the open-field test was conducted to observe the praxiological changes of mice, and to determine the levels of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HTAA) in the hippocampal tissue, as well as the contents of 5-HT, brain-derived neurotrophic factor (BDNF), interleukin-2 (IL-2), IL-6, B-cell lymphoma-2 (Bcl- 2), and Bcl-2-associated X protein (Bax) in the serum. The expression of phosphoinositide 3-kinase/protein kinase B/nuclear factor- κB (PI3K/Akt/NF-κB) signaling pathway related protein was determined in the hippocampus of mice. RESULTS Compared with the model group, the total exercise time of mice in S. italica extract high-dose group was significantly prolonged, but the total rest time was significantly shortened (P<0.01); the number of standing times and modification times were significantly reduced (P< 0.01). The contents of 5-HT, BDNF, and Bcl-2 in serum, and Bcl-2/Bax were significantly increased, while the contents of IL-2, IL-6, and Bax were significantly reduced (P<0.05 or P< 0.01). The content of 5-HTAA in the hippocampal tissue and 202104010910029);the phosphorylation levels of PI3K and Akt proteins were increased significantly, while the phosphorylation level of NF-κB p65 protein was decreased significantly (P<0.05).CONCLUSIONS High-dose of S. italica extract demonstrates significant therapeutic effects on insomnia in mice, and the mechanism of which may be associated with the regulation of PI3K/Akt/NF-κB signaling pathway.