Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add filters








Year range
1.
Acta Pharmaceutica Sinica B ; (6): 1447-1459, 2022.
Article in English | WPRIM | ID: wpr-929362

ABSTRACT

Cancer remains one of the leading causes of death globally and metastasis always leads to treatment failure. Here, we develop a versatile hydrogel loading photothermal agents, chemotherapeutics, and immune-adjuvants to eradicate orthotopic tumors and inhibit metastasis by combinational therapy. Hydrogel networks were synthesized via the thiol-Michael addition of polydopamine (PDA) with thiolated hyaluronic acid. PDA acted as a cross-linking agent and endowed the hydrogel with excellent photothermal property. Meanwhile, a chemotherapeutic agent, doxorubicin (DOX), was loaded in the hydrogel via π‒π stacking with PDA and an immune-adjuvant, CpG-ODN, was loaded via electrostatic interaction. The release of DOX from the hydrogel was initially slow but accelerated due to near infrared light irradiation. The hydrogels showed remarkably synergistic effect against 4T1 cancer cells and stimulated plenty of cytokines secreting from RAW264.7 cells. Moreover, the hydrogels eradicated orthotopic murine breast cancer xenografts and strongly inhibited metastasis after intratumoral injection and light irradiation. The high anticancer efficiency of this chemo-photothermal immunotherapy resulted from the strong synergistic effect of the versatile hydrogels, including the evoked host immune response. The combinational strategy of chemo-photothermal immunotherapy is promising for highly effective treatment of breast cancer.

2.
Acta Pharmaceutica Sinica B ; (6): 437-450, 2022.
Article in English | WPRIM | ID: wpr-929305

ABSTRACT

Dry powder inhalers (DPIs) had been widely used in lung diseases on account of direct pulmonary delivery, good drug stability and satisfactory patient compliance. However, an indistinct understanding of pulmonary delivery processes (PDPs) hindered the development of DPIs. Most current evaluation methods explored the PDPs with over-simplified models, leading to uncompleted investigations of the whole or partial PDPs. In the present research, an innovative modular process analysis platform (MPAP) was applied to investigate the detailed mechanisms of each PDP of DPIs with different carrier particle sizes (CPS). The MPAP was composed of a laser particle size analyzer, an inhaler device, an artificial throat and a pre-separator, to investigate the fluidization and dispersion, transportation, detachment and deposition process of DPIs. The release profiles of drug, drug aggregation and carrier were monitored in real-time. The influence of CPS on PDPs and corresponding mechanisms were explored. The powder properties of the carriers were investigated by the optical profiler and Freeman Technology four powder rheometer. The next generation impactor was employed to explore the aerosolization performance of DPIs. The novel MPAP was successfully applied in exploring the comprehensive mechanism of PDPs, which had enormous potential to be used to investigate and develop DPIs.

3.
Acta Pharmaceutica Sinica B ; (6): 505-519, 2021.
Article in English | WPRIM | ID: wpr-881150

ABSTRACT

Psoriatic arthritis (PsA) is a complicated psoriasis comorbidity with manifestations of psoriatic skin and arthritic joints, and tailoring specific treatment strategies for simultaneously delivering different drugs to different action sites in PsA remains challenging. We developed a need-based layered dissolving microneedle (MN) system loading immunosuppressant tacrolimus (TAC) and anti-inflammatory diclofenac (DIC) in different layers of MNs,

4.
Acta Pharmaceutica Sinica B ; (6): 2585-2604, 2021.
Article in English | WPRIM | ID: wpr-888873

ABSTRACT

Invasive fungal infections (IFIs) represent a growing public concern for clinicians to manage in many medical settings, with substantial associated morbidities and mortalities. Among many current therapeutic options for the treatment of IFIs, amphotericin B (AmB) is the most frequently used drug. AmB is considered as a first-line drug in the clinic that has strong antifungal activity and less resistance. In this review, we summarized the most promising research efforts on nanocarriers for AmB delivery and highlighted their efficacy and safety for treating IFIs. We have also discussed the mechanism of actions of AmB, rationale for treating IFIs, and recent advances in formulating AmB for clinical use. Finally, this review discusses some practical considerations and provides recommendations for future studies in applying AmB for combating IFIs.

5.
Acta Pharmaceutica Sinica B ; (6): 2344-2361, 2021.
Article in English | WPRIM | ID: wpr-888806

ABSTRACT

Recent infectious disease outbreaks, such as COVID-19 and Ebola, have highlighted the need for rapid and accurate diagnosis to initiate treatment and curb transmission. Successful diagnostic strategies critically depend on the efficiency of biological sampling and timely analysis. However, current diagnostic techniques are invasive/intrusive and present a severe bottleneck by requiring specialist equipment and trained personnel. Moreover, centralised test facilities are poorly accessible and the requirement to travel may increase disease transmission. Self-administrable, point-of-care (PoC) microneedle diagnostic devices could provide a viable solution to these problems. These miniature needle arrays can detect biomarkers in/from the skin in a minimally invasive manner to provide (near-) real-time diagnosis. Few microneedle devices have been developed specifically for infectious disease diagnosis, though similar technologies are well established in other fields and generally adaptable for infectious disease diagnosis. These include microneedles for biofluid extraction, microneedle sensors and analyte-capturing microneedles, or combinations thereof. Analyte sampling/detection from both blood and dermal interstitial fluid is possible. These technologies are in their early stages of development for infectious disease diagnostics, and there is a vast scope for further development. In this review, we discuss the utility and future outlook of these microneedle technologies in infectious disease diagnosis.

6.
Acta Pharmaceutica Sinica B ; (6): 3244-3261, 2021.
Article in English | WPRIM | ID: wpr-922791

ABSTRACT

Major challenges for cancer treatment are how to effectively eliminate primary tumor and sufficiently induce immunogenic cell death (ICD) to provoke a robust immune response for metastasis control. Here, a self-assembled cascade bioreactor was developed to improve cancer treatment with enhanced tumor penetration and synergistic therapy of starvation, chemodynamic (CDT) and photothermal therapy. Ultrasmall FeS-GOx nanodots were synthesized with glucose oxidase (GOx) as template and induced by paclitaxel (PTX) to form self-assembling FeS-GOx@PTX (FGP)

7.
Acta Pharmaceutica Sinica B ; (6): 2075-2109, 2020.
Article in English | WPRIM | ID: wpr-881100

ABSTRACT

In many ways, cancer cells are different from healthy cells. A lot of tactical nano-based drug delivery systems are based on the difference between cancer and healthy cells. Currently, nanotechnology-based delivery systems are the most promising tool to deliver DNA-based products to cancer cells. This review aims to highlight the latest development in the lipids and polymeric nanocarrier for siRNA delivery to the cancer cells. It also provides the necessary information about siRNA development and its mechanism of action. Overall, this review gives us a clear picture of lipid and polymer-based drug delivery systems, which in the future could form the base to translate the basic siRNA biology into siRNA-based cancer therapies.

8.
Acta Pharmaceutica Sinica B ; (6): 1331-1346, 2020.
Article in English | WPRIM | ID: wpr-828804

ABSTRACT

An explicit illustration of pulmonary delivery processes (PDPs) was a prerequisite for the formulation design and optimization of carrier-based DPIs. However, the current evaluation approaches for DPIs could not provide precise investigation of each PDP separately, or the approaches merely used a simplified and idealized model. In the present study, a novel modular modified Sympatec HELOS (MMSH) was developed to fully investigate the mechanism of each PDP separately in real-time. An inhaler device, artificial throat and pre-separator were separately integrated with a Sympatec HELOS. The dispersion and fluidization, transportation, detachment and deposition processes of pulmonary delivery for model DPIs were explored under different flow rates. Moreover, time-sliced measurements were used to monitor the PDPs in real-time. The Next Generation Impactor (NGI) was applied to determine the aerosolization performance of the model DPIs. The release profiles of the drug particles, drug aggregations and carriers were obtained by MMSH in real-time. Each PDP of the DPIs was analyzed in detail. Moreover, a positive correlation was established between the total release amount of drug particles and the fine particle fraction (FPF) values ( = 0.9898). The innovative MMSH was successfully developed and was capable of illustrating the PDPs and the mechanism of carrier-based DPIs, providing a theoretical basis for the design and optimization of carrier-based DPIs.

9.
Acta Pharmaceutica Sinica B ; (6): 19-35, 2019.
Article in English | WPRIM | ID: wpr-775006

ABSTRACT

In recent years, the coamorphous drug delivery system has been established as a promising formulation approach for delivering poorly water-soluble drugs. The coamorphous solid is a single-phase system containing an active pharmaceutical ingredient (API) and other low molecular weight molecules that might be pharmacologically relevant APIs or excipients. These formulations exhibit considerable advantages over neat crystalline or amorphous material, including improved physical stability, dissolution profiles, and potentially enhanced therapeutic efficacy. This review provides a comprehensive overview of coamorphous drug delivery systems from the perspectives of preparation, physicochemical characteristics, physical stability, and performance. Furthermore, the challenges and strategies in developing robust coamorphous drug products of high quality and performance are briefly discussed.

10.
Article in Chinese | WPRIM | ID: wpr-673107

ABSTRACT

This paper presents a new method of separating the junction between the epidermis and the dermis with enzyme,and then,observing the small wound of the papillary of the dermis by means of SEM.The result showed that this new method would be advantageous to the identification of small stab wounds and providing some concrete identify targets.

SELECTION OF CITATIONS
SEARCH DETAIL