ABSTRACT
Background Salidroside (SAL) has a protective effect on multiple organ systems. Exposure to fine particulate matter (PM2.5) in the atmosphere may lead to disruptions in gut microbiota and impact intestinal health. The regulatory effect of SAL on the gut microbiota of mice exposed to PM2.5 requires further investigation. Objective To evaluate gut microbiota disruption in mice after being exposed to PM2.5 and the potential effect of SAL. Methods Forty male C57BL/6 mice, aged 6 to 8 weeks, were randomly divided into four groups: a control group, an SAL group, a PM2.5 group, and an SAL+PM2.5 group, each containing 10 mice. In the SAL group and the SAL+PM2.5 group, the mice were administered SAL (60 mg·kg−1) by gavage, while in the control group and the PM2.5 group, sterile saline (10 mL·kg−1) was administered by gavage. In the PM2.5 group and the SAL+PM2.5 group, PM2.5 suspension (8 mg·kg−1) was intratracheally instilled, and in the control group and SAL group, sterile saline (1.5 mL·kg−1) was intratracheally administered. Each experiment cycle spanned 2 d, with a total of 10 cycles conducted over 20 d. Histopathological changes in the ileum tissue of the mice were observed after HE staining. Colon contents were collected for gut microbiota sequencing and short-chain fatty acids (SCFAs) measurements. Results The PM2.5 group showed infiltration of inflammatory cells in the ileum tissue, while the SAL+PM2.5 group exhibited only a small amount of inflammatory cell infiltration. Compared to the control group, the PM2.5 group showed decreased Shannon index (P<0.05) and increased Simpson index (P<0.05), indicating that the diversity of gut microbiota in this group was decreased; the SAL+PM2.5 group showed increased Shannon index compared to the PM2.5 group (P<0.05) and decreased Simpson index (P<0.05), indicating that the diversity of gut microbiota in mice intervened with SAL was increased. The principal coordinates analysis (PCoA) revealed a significant separation between the PM2.5 group and the control group, while the separation trend was less evident among the control group, the SAL group, and the SAL+PM2.5 group. The unweighted pair-group method with arithmetic means (UPGMA) clustering tree results showed that the control group and the SAL group clustered together first, followed by clustering with the SAL+PM2.5 group, and finally, the three groups clustered with the PM2.5 group. The PCoA and UPGMA clustering results indicated that the uniformity and similarity of the microbiota in the PM2.5 group were significantly decreased. Compared to the control group, the PM2.5 group showed decreased abundance of phylum Bacteroidetes and Candidatus_Saccharimonas (P<0.05) and increased abundance of phylum Proteobacteria, genus Escherichia, genus Bacteroides, genus Prevotella, genus Enterococcus, and genus Proteus (P<0.05). Compared to the PM2.5 group, the SAL+PM2.5 group showed decreased abundance of phylum Proteobacteria, phylum Actinobacteria, genus Prevotella, and genus Proteus (P<0.05), and increased abundance of Candidatus_Saccharimonas (P<0.05). The PM2.5 group showed reduced levels of propionic acid, valeric acid, and hexanoic acid compared to the control group (P<0.05), while the SAL+PM2.5 group showed increased levels of propionic acid, isobutyric acid, butyric acid, valeric acid, and hexanoic acid compared to the PM2.5 group (P<0.05). Conclusion Exposure to PM2.5 can cause pathological alterations, microbial dysbiosis, and disturbing production of SCFAs in intestinal tissue in mice. However, SAL can provide a certain degree of protective effect against these changes.
ABSTRACT
Objective:To observe the effects of acupuncture and moxibustion at Feishu(BL13)on inflammatory responses and intestinal short-chain fatty acids(SCFAs)in rats with asthma. Methods:Fifty-six Sprague-Dawley rats were randomly divided into a normal group(16 rats)and a modeling group(40 rats).Rats in the modeling group were subjected to establishing asthma models using ovalbumin(OVA).Model evaluation was conducted using 4 rats from each group.The remaining rats that successfully developed asthma were then randomly divided into a model group,an acupuncture group,and a moxibustion group,with 12 rats in each group.Rats in the acupuncture group received acupuncture treatments,and those in the moxibustion group received moxibustion treatments,both at Feishu(BL13)for 30 min.Following the treatments,the rats were exposed to atomization excitation with a 1%OVA solution for 20 min daily for 14 consecutive days.At the end of the experiment,inflammatory markers in the rats'peripheral blood were analyzed using a biochemical method.In addition,inflammatory cells in the bronchoalveolar lavage fluid(BALF)were counted using Wright-Giemsa staining.The lung tissue of rats was examined under a light microscope after staining with hematoxylin-eosin to observe morphological or pathological changes.Furthermore,real-time fluorescence quantitative polymerase chain reaction was utilized to measure the mRNA expression of inflammatory factors in the lung tissue.Lastly,the concentration of SCFAs in the rat's feces was determined using gas chromatography-hydrogen flame ionization. Results:The levels of eosinophils(Eos),neutrophils(Neu),and lymphocytes(Lym)in the peripheral blood,as well as Eos and Neu in the BALF,and the expression of interleukin(IL)-4,IL-5,IL-13,IL-33,and thymic stromal lymphopoietin(TSLP)mRNAs in the lung tissue were all found to be significantly increased(P<0.05 or P<0.01);the lung tissue structure displayed severe injuries;the levels of acetic acid,propionic acid,isobutyric acid,butyric acid,and valeric acid in the feces decreased significantly in the model group(P<0.05 or P<0.01).Compared with the model group,the peripheral blood levels of Eos,Neu,and Lym,as well as Eos in the BALF,and the mRNA expression levels of IL-4 and IL-5 in the lung tissue decreased significantly in both the acupuncture group and the moxibustion group(P<0.05 or P<0.01).This reduction was accompanied by alleviated pathological damage in the lung tissue.Additionally,there were significant increases in the levels of acetic acid,propionic acid,isobutyric acid,and butyric acid in the feces in both the acupuncture group and the moxibustion group(P<0.05 or P<0.01).In the acupuncture group,the expression levels of Lym in the BALF and IL-13 mRNA in the lung tissue decreased significantly(P<0.05 or P<0.01).In the moxibustion group,the mRNA expression levels of IL-33 and TSLP in the lung tissue also reduced significantly(P<0.05 or P<0.01).Furthermore,the level of valeric acid in the feces increased notably in the moxibustion group(P<0.01).Compared with the acupuncture group,it was found that the mRNA levels of IL-5 and IL-13 in the lung tissue,as well as the acetic acid level in the feces,were significantly higher in the moxibustion group(P<0.05 or P<0.01). Conclusion:Both acupuncture and moxibustion were effective in reducing abnormal inflammation and regulating intestinal SCFAs in asthma model rats.Acupuncture demonstrated superiority in inhibiting pro-inflammatory factors,particularly IL-5 and IL-13,while moxibustion exhibited better regulation on intestinal metabolites SCFAs,especially acetic acid.
ABSTRACT
ObjectiveTo investigate the mechanism of Atractylodis Macrocephalae Rhizoma(AMR) in the treatment of slow-transmission constipation(STC) by observing the effects of AMR on short-chain fatty acids and intestinal barries in STC mice. MethodForty-eight male KM mice were randomly divided into blank group, model group, AMR low-, medium-, high-dose groups(2.5, 5, 10 g·kg-1) and mosapride group(2.5 mg·kg-1). Except for the blank group, all groups were gavaged with loperamide suspension(5 mg·kg-1) twice daily for 14 d to construct the STC mouse model. At the same time, each drug administration group was given the corresponding drug by gavage for consecutive 14 d, the blank and model groups were gavaged with equal volume of distilled water. The effects of the treatment of AMR on body mass, defecation frequency, fecal water content and intestinal propulsion rate of mice were observed, the pathological changes of mouse colon were observed by hematoxylin-eosin(HE) staining and periodic acid-Schiff(PAS) staining, the levels of gastrin(GAS) and motilin(MTL) in serum were detected by enzyme-linked immunosorbent assay(ELISA), gas chromatography-mass spectrometry(GC-MS) was used to detect the contents of short-chain fatty acids(SCFAs) in mouse feces, real-time fluorescence quantitative polymerase chain reaction(Real-time PCR) and Western blot were used to determine the mRNA and protein expression levels of zonula occludens-1(ZO-1), Occludin, and Claudin-1 in the colon of mice. ResultCompared with the blank group, the body mass, defecation frequency, fecal water content and intestinal propulsion rate of mice in the model group were significantly decreased(P<0.05, P<0.01), the arrangement of colonic tissues was disordered, and the number of goblet cells was reduced, the levels of GAS and MTL in serum were significantly decreased(P<0.01), and the levels of SCFAs in the feces were on a decreasing trend, with the contents of acetic acid, propionic acid, butyric acid, isobutyric acid and valeric acid were significantly decreased(P<0.05, P<0.01), the mRNA and protein expression levels of ZO-1, Occludin and Claudin-1 in the colonic tissues were significantly decreased(P<0.01). The above results suggested that STC mouse model was successfully constructed. Compared with the model group, the body mass, defecation frequency, fecal water content and intestinal propulsion rate of mice in AMP administration groups all increased significantly(P<0.05, P<0.01), the mucosal layer of the colonic tissues was structurally intact without obvious damage, and the number of goblet cells increased, serum levels of GAS and MTL were significantly increased(P<0.01), the contents of SCFAs in the feces were all on a rising trend, with the contents of acetic, propionic, butyric and isobutyric acids rising significantly(P<0.05, P<0.01), the mRNA and protein expression levels of ZO-1, Occludin and Claudin-1 in the colonic tissues were significantly increased(P<0.05, P<0.01). ConclusionAMR is able to improve the constipation symptoms in STC mice, and its mechanism may be related to increasing the contents of SCFAs in the intestine as well as promoting the mRNA and protein expression levels of ZO-1, Occludin and Claudin-1 in the colon.
ABSTRACT
The mild-natured and bitter-flavored traditional Chinese medicines (MB-TCMs) are an important class of TCMs that have been widely used in clinical practice and recognized as safe long-term treatments for chronic diseases. However, as an important class of TCMs, the panorama of pharmacological effects and the mechanisms of MB-TCMs have not been systemically reviewed. Compelling studies have shown that gut microbiota can mediate the therapeutic activity of TCMs and help to elucidate the core principles of TCM medicinal theory. In this systematic review, we found that MB-TCMs commonly participated in the modulation of metabolic syndrome, intestinal inflammation, nervous system disease and cardiovascular system disease in association with promoting the growth of beneficial bacteria Bacteroides, Akkermansia, Lactobacillus, Bifidobacterium, Roseburia as well as inhibiting the proliferation of harmful bacteria Helicobacter, Enterococcus, Desulfovibrio and Escherichia-Shigella. These alterations, correspondingly, enhance the generation of protective metabolites, mainly including short-chain fatty acids (SCFAs), bile acid (BAs), 5-hydroxytryptamine (5-HT), indole and gamma-aminobutyric acid (GABA), and inhibit the generation of harmful metabolites, such as proinflammatory factors trimethylamine oxide (TAMO) and lipopolysaccharide (LPS), to further exert multiplicative effects for the maintenance of human health through several different signaling pathways. Altogether, this present review has attempted to comprehensively summarize the relationship between MB-TCMs and gut microbiota by establishing the TCMs-gut microbiota-metabolite-signaling pathway-diseases axis, which may provide new insight into the study of TCM medicinal theories and their clinical applications.
ABSTRACT
ObjectiveTo explore the impact of Gegen Qinliantang(GQT) on the fecal short-chain fatty acids(SCFAs) metabolism in antibiotic-associated diarrhea(AAD) through targeted metabolomics. MethodA total of 240 SD rats were randomly divided into six groups(n=40, half male and half female), including blank group, model group, bifidobiogen group(0.15 g·kg-1), and GQT high-, medium-, and low-dose groups(10.08, 5.04, 2.52 g·kg-1), except for the blank group, clindamycin(250 mg·kg-1) was given to all groups by gavage for modeling every day for 7 d. After successful modeling, each administered group was gavaged with the corresponding dose of the drug, and the blank and model groups were gavaged with an equal volume of normal saline solution, 1 time/d, for 14 d. At 0, 3, 7, 14 d after the drug intervention, eight rats were randomly selected from each group, respectively. Gas chromatography-time-of-flight mass spectrometry(GC-TOF-MS) was used to perform targeted metabolomic analysis of SCFAs in the feces of rats, and partial least squares-discriminant analysis(PLS-DA) was applied to compare the differences in metabolic profiles between groups at different treatment times, and to compare the changes in the contents of SCFAs in rat feces between groups. ResultPLS-DA results showed that the blank group could be clearly distinguishable from the model group, with GQT exhibiting a closer proximity to the blank group after 7 d of treatment. After further analyzing the composition of SCFAs, it was found that the proportion of acetic acid increased and the proportions of butyric acid, valeric acid, hexanoic acid and isovaleric acid decreased in the model group compared with the blank group. After the treatment with GQT, the proportions of butyric acid, isobutyric acid, valeric acid, and isovaleric acid increased, and the proportions of acetic acid, propionic acid and caproic acid decreased. Subsequent differential analysis revealed that GQT could significantly improve the content of butyric acid, and had a certain retrogressive effect on the contents of valeric acid and hexanoic acid. ConclusionThe medium dose group of GQT can improve the contents of SCFAs in AAD feces after 7 days of treatment, which may be related to the improvement of the composition ratio of SCFAs and the contents of butyric acid, valeric acid and caproic acid.
ABSTRACT
@#Abstract: To explore the mechanism of the intestinal microecology regulation by polysaccharide prebiotics, ELISA, histopathologic analysis, immunohistochemical analysis, 16S rRNA high-throughput sequencing, and gas chromatography-mass spectrometry were applied to investigate the effects of fermented polysaccharides on changes in the intestinal microbiota and short-chain fatty acids (SCFAs) in mice with dextran sulfate sodium (DSS)-induced colitis model and their relationship with the level of intestinal inflammation and barrier protein expression. It was found that fermented Lycium barbarum polysaccharides (FLBP) significantly reduced intestinal inflammation level, improved colonic tissue structure, up-regulated the expression of tight junction proteins Claudin-1 and ZO-1, and significantly increased the content of intestinal SCFAs in mice. Gut bacteria analyses showed that FLBP enriched intestinal Dubosiella and Akkermansia in mice and decreased the abundance of Turicibacter, Faecalibaculum, and Escherichia-Shigella. Results showed that remodeled Dubosiella activated by FLBP played a dominant role in ameliorating colitis by significantly increasing SCFAs content, improving intestinal barrier and reducing intestinal inflammation. The study aimed to provide a safer and better option for the amelioration of colitis and to provide a theoretical basis for the development of functional foods with FLBP.
ABSTRACT
Objective:To analyze the concentration of formic acid,propionic acid and butyric acid in gingival crevicular fluid(GCF)of patients with stages Ⅲ and Ⅳ periodontitis,and their relationship with periodontitis.Methods:The study enrolled 37 systemically healthy patients with periodontitis and 19 healthy controls who visited Department of Periodontology,Peking University School and Hospital of Sto-matology from February 2008 to May 2011.Their GCFs were collected from the mesial-buccal site of one molar or incisor in each quadrant.Periodontal clinical parameters,including plaque index(PLI),probing depth(PD),bleeding index(BI),and attachment loss(AL).Concentrations of formic acid,propionic acid and butyric acid in the supernatant of the GCFs were analyzed by high-performance capil-lary electrophoresis(HPCE).The prediction ability of formic acid,propionic acid and butyric acid with the risk of periodontitis and the differences between grade B and grade C periodontitis were analyzed.Results:In this study,32 patients with stage Ⅲ and 5 patients with stage Ⅳ were enrolled,including 9 patients with grade B and 28 patients with grade C.Clinical periodontal variables in the patients with pe-riodontitis were significantly higher than those in the control group(P<0.001).Formic acid was signifi-cantly lower in periodontitis than that in the control group[5.37(3.39,8.49)mmol/L vs.12.29(8.35,16.57)mmol/L,P<0.001].Propionic acid and butyric acid in periodontitis were significantly higher than those in the control group:Propionic acid,10.23(4.28,14.90)mmol/L vs.2.71(0.00,4.25)mmol/L,P<0.001;butyric acid,2.63(0.47,3.81)mmol/L vs.0.00(0.00,0.24)mmol/L,P<0.001.There was no significant difference in formic acid,propionic acid and butyric acid concentrations between grade B and grade C periodontitis(P>0.05).Propionic acid and butyric acid in the deep pocket were significantly higher than in the shallow pocket,while the concentration of formic acid decreased with the increase of PD.Propionic acid(OR=1.51,95%CI:1.29-1.75)and butyric acid(OR=3.72,95%CI:1.93-7.17)were risk factors for periodontitis,while formic acid(OR=0.87,95%CI:0.81-0.93)might be a protective factor for periodontitis.Propionic acid(AUC=0.852,95%CI:0.805-0.900),butyric acid(AUC=0.889,95%CI:0.841-0.937),f(formic acid,AUC=0.844,95%CI:0.793-0.895)demonstrated a good predictive capacity for the risk of periodontitis.Conclusion:The concentration of formic acid decrease in the GCF of periodontitis patients,which is a protective factor for periodontitis,its reciprocal have good predictive capacity.However,propionic acid and butyric acid increase,which are risk factors for periodontitis and have good predictive capacity.The concentration of formic acid,propionic acid,and butyric acid vary with probing depth,but there is no significant difference between grade B and grade C periodontitis.
ABSTRACT
BACKGROUND:Studies have shown that short-chain fatty acids(SCFAs)are a potential regulator of skeletal muscle energy metabolism,but the exact mechanism is unclear. OBJECTIVE:To observe the effect of SCFAs on aged rats with sarcopenia and to explore the underlying mechanism. METHODS:Sprague-Dawley rats were randomly divided into control group,sarcopenia group,and sarcopenia+SCFAs group(SCFAs group).In the latter two groups,rat models of sarcopenia were established using ovariectomized rats injected with 5 mg/kg dexamethasone for 7 days.In the control group,the abdominal cavity was only exposed but not removed,and then sutured.Rats in the SCFAs group were administered drinking water containing 150 mmol/L short-chain fatty acids,600 mg/kg sodium acetate,200 mg/kg sodium propionate,and 200 mg/kg sodium butyrate for 4 weeks.Rats in the control and sarcopenia groups were given the same volume of normal saline.Successful modeling was assessed by measuring the bilateral gastrocnemius muscle mass and body mass to calculate the gastrocnemius index after modeling.Food intake,body mass and grip strength of rats were measured at 0,1,2 and 4 weeks after successful modeling;morphological changes of gastrocnemius muscle were observed by hematoxylin-eosin staining;and the expression of p-AMPK and p-ULK1 proteins in gastrocnemius muscle was detected by western blot. RESULTS AND CONCLUSION:Compared with the control group,the sarcopenia group showed significantly decreased body mass,food intake,forelimb grip strength(P<0.05),wet mass of gastrocnemius muscle(P<0.05),and protein levels of p-AMPK and p-ULK1(P<0.05).Compared with the sarcopenia group,the SCFAs group showed a significant increase in food intake,body mass,grip strength,wet mass of gastrocnemius muscle,and protein levels of p-AMPK and p-ULK1 in gastrocnemius muscle(P<0.05).All these findings indicate that SCFAs improve symptoms of sarcopenia in the elderly and may be associated with the upregulation of AMPK and ULK1 proteins in skeletal muscle.
ABSTRACT
AIM:This study aims to investigate the impact of nobiletin(NOB)on the gut microbiota and short-chain fatty acids(SCFAs)in high-fat diet-induced obese rats.METHODS:A total of 22 SD rats were randomly di-vided into the control(CON)group and high-fat diet(HFD)group.The HFD induced obesity,upon successful modeling,the rats were further divided into the HFD and NOB group,each group consisting of 6 rats.The NOB group received nobi-letin solution(100 mg·kg-1·d-1)via gavage for 21 consecutive days.Body weight was measured bi-daily,and hematoxylin-eosin(HE)staining was employed to observe pathological changes in adipose tissue and liver.Serum lipid levels were as-sessed using an auto-biochemical analyzer.Analysis of the gut microbiota was performed using 16S ribosomal RNA(rRNA)sequencing,while high-performance liquid chromatography mass spectrometry(LC-MS)was used to determine SCFAs levels in rat feces.RESULTS:Compared with CON group,HFD-fed demonstrated a substantial increase in body weight(P<0.01),accompanied by an augmentation in adipocyte diameter and the presence of hepatic cell vacuolization,indicative of cellular steatosis and inflammation.Moreover,there was a notable elevation in TG and TC levels(P<0.05).At the phylum level,the HFD rats exhibited an altered composition,characterized by an increase in Firmicutes and a con-current decrease in Bacteroidetes.At the genus level,Bacteroides,Lactobacillus and Blautia experienced a significant de-crease,while Colidextribacter showed an increase.Notably,there was a substantial reduction in the expression of propion-ic acid and butyric acid.In comparison to the HFD group,rats administered with NOB demonstrated a marked decrease in body weight(P<0.05),a reduction in adipocyte diameter,and an amelioration in hepatic cell vacuolization and cellular steatosis.Furthermore,TG and TC levels exhibited a significant decrease(P<0.05).At the phylum level,Firmicutes de-creased,and Bacteroidetes increased.At the genus level,Bacteroides,Lactobacillus and Blautia exhibited a significant in-crease,while Colidextribacter displayed a decrease.Additionally,there was an up-regulation of propionic acid and butyric acid levels in the NOB group.CONCLUSION:Nobiletin,through its multifaceted actions,demonstrates a potential anti-obesity effect by effectively reducing body weight in obese rats.This includes the regulation of gut microbiota structure,modulation of SCFAs content,and enhancement of lipid metabolism.
ABSTRACT
This study evaluated the effect of diets containing low levels of soluble and insoluble fiber sources on performance, diarrhea score, chemical and physical characteristics of feces, and behavior in weaning piglets. Thirty-six weaned piglets of 30 days of age with an initial body weight of 8.8 kg were distributed in 36 pens using a completely randomized design in an experimental period of 21 days. The experimental treatments were the Control diet (CONT), the Control diet + 1% beet pulp inclusion (SBP), and the Control diet + 1% lignocellulose inclusion (LCE, Arbocel®). Feed and water were available ad libitum. Body weight and feed intake were measured weekly to calculate the average daily intake, weight gain, and feed conversion ratio. The fecal consistency was determined visually twice daily, classifying feces according to three scores. To determine fecal pH and concentration of fecal short-chain fatty acids (SCFA), samples of fresh feces were collected two weeks after weaning and measured by a digital pH meter and gas chromatography, respectively. The behavior of piglets was observed once a week, using four animals per treatment, from 14:00 to 16:00, every 12 min. Fibre sources had no effect (P>0.05) on performance, except in the period 15 to 21 days after weaning, which was a tendency (P=0.061) of feed intake decrease in SBP and LCE diets. Fiber sources did not affect the fecal consistency score (P>0.05). However, piglets fed SBP and LCE showed a tendency (P<0.10) to have less diarrhea incidence 15 to 21 days post-weaning and in the entire experimental period. Fecal pH and SCFA concentration were not influenced by fiber source (P>0.05), with acetic, propionic, and butyric acids representing around 71%, 19%, and 10% of the total, respectively. Fiber sources did not influence the social and feeding behavior of weaning piglets (P>0.05). Diets containing 1% fiber sources did not alter performance, diarrhea score, fecal pH, fecal SCFA concentration, or feeding and social behavior of weaned piglets.(AU)
O estudo avaliou o efeito de dietas contendo baixos níveis de fontes de fibra solúvel e insolúvel sobre o desempenho, escore de diarreia, características químicas e físicas das fezes e comportamento de leitões desmamados. Trinta e seis leitões desmamados, com 30 dias de idade e peso vivo inicial de 8,8 kg, foram distribuídos em 36 baias, totalizando 12 repetições por tratamento, em um delineamento inteiramente casualizado. Os tratamentos experimentais foram: dieta controle (CONT), dieta controle + 1% de inclusão de polpa de beterraba (SBP) e dieta controle + 1% de inclusão de lignocelulose (LCE, Arbocel®). A ração e a água foram disponibilizadas ad libitum durante os 21 dias experimentais. O consumo médio diário de ração (CRM), ganho de peso diário (GPD) e a conversão alimentar (CA) foram medidos semanalmente. A consistência fecal foi determinada visualmente duas vezes por dia, classificando as fezes de acordo com três classificações. Amostras frescas de fezes, colhidas no 14° dia experimental, foram usadas para determinação do pH e ácidos graxos de cadeia curta (AGCC). O pH foi medido utilizando pHmetro digital, enquanto os AGCC foram determinados com auxílio de cromatografia gasosa. Para avaliar o comportamento foram observados quatro leitões por tratamento, uma vez por semana, das 14:00 às 16:00, a cada 12 minutos. As fontes de fibra não apresentaram efeito (P>0,05) sobre as variáveis de desempenho, exceto no período de 15 a 21 dias pós desmame, onde se observou uma tendência (P=0,061) de redução no consumo médio nos leitões que receberam as dietas contendo SBP e LCE. Não foi observado efeito das fontes de fibra sobre o escore de consistência fecal (P>0,05), embora leitões alimentados com SBP e LCE apresentaram uma tendência (P<0,10) de redução na incidência de diarreia no período de 15 a 21 dias pós desmame e no período total. O pH e a concentração de AGCC não foram influenciados pelas fontes de fibra (P>0,05), onde entres os tratamentos os perfis dos ácidos acético, propiônico e butírico foram semelhantes 71%, 19% e 10%, respectivamente. Não houve efeito das fontes de fibra sobre os comportamentos social e alimentar dos leitões (P>0,05). Dietas contendo 1% de fontes de fibra não alteram o desempenho, escore de diarreia, pH fecal, concentração de ácidos graxos voláteis nas fezes, bem como o comportamento alimentar e social de leitões desmamados.(AU)
Subject(s)
Animals , Swine/physiology , Dietary Fiber/analysis , Animal Feed/analysis , Fatty Acids, Volatile/analysis , Food Additives/analysisABSTRACT
This study aimed to investigate the biological effects and underlying mechanisms of the total ginsenosides from Panax ginseng stems and leaves on lipopolysaccharide(LPS)-induced acute lung injury(ALI) in mice. Sixty male C57BL/6J mice were randomly divided into a control group, a model group, the total ginsenosides from P. ginseng stems and leaves normal administration group(61.65 mg·kg~(-1)), and low-, medium-, and high-dose total ginsenosides from P. ginseng stems and leaves groups(15.412 5, 30.825, and 61.65 mg·kg~(-1)). Mice were administered for seven continuous days before modeling. Twenty-four hours after modeling, mice were sacrificed to obtain lung tissues and calculate lung wet/dry ratio. The number of inflammatory cells in bronchoalveolar lavage fluid(BALF) was detected. The levels of interleukin-1β(IL-1β), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α) in BALF were detected. The mRNA expression levels of IL-1β, IL-6, and TNF-α, and the levels of myeloperoxidase(MPO), glutathione peroxidase(GSH-Px), superoxide dismutase(SOD), and malondialdehyde(MDA) in lung tissues were determined. Hematoxylin-eosin(HE) staining was used to observe the pathological changes in lung tissues. The gut microbiota was detected by 16S rRNA sequencing, and gas chromatography-mass spectrometry(GC-MS) was applied to detect the content of short-chain fatty acids(SCFAs) in se-rum. The results showed that the total ginsenosides from P. ginseng stems and leaves could reduce lung index, lung wet/dry ratio, and lung damage in LPS-induced ALI mice, decrease the number of inflammatory cells and levels of inflammatory factors in BALF, inhibit the mRNA expression levels of inflammatory factors and levels of MPO and MDA in lung tissues, and potentiate the activity of GSH-Px and SOD in lung tissues. Furthermore, they could also reverse the gut microbiota disorder, restore the diversity of gut microbiota, increase the relative abundance of Lachnospiraceae and Muribaculaceae, decrease the relative abundance of Prevotellaceae, and enhance the content of SCFAs(acetic acid, propionic acid, and butyric acid) in serum. This study suggested that the total ginsenosides from P. ginseng stems and leaves could improve lung edema, inflammatory response, and oxidative stress in ALI mice by regulating gut microbiota and SCFAs metabolism.
Subject(s)
Mice , Male , Animals , Ginsenosides/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6 , Panax/genetics , Lipopolysaccharides/adverse effects , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Mice, Inbred C57BL , Acute Lung Injury/genetics , Lung/metabolism , Superoxide Dismutase/metabolism , Plant Leaves/metabolism , RNA, MessengerABSTRACT
OBJECTIVE@#To observe the effects of electroacupuncture at "Siguan" points on behavior, colonic 5-hydroxytryptamine (5-HT) and fecal short-chain fatty acids (SCFAs) in rats with post-stroke depression (PSD), and explore the effect mechanism of electroacupuncture at Siguan points on PSD.@*METHODS@#Fifty SD rats were randomly divided into a sham-operation group, a stroke group, a PSD group, a drug group and an electroacupuncture group, with 10 rats in each one. The stroke model was established by middle cerebral artery occlusion (MCAO) method in the stroke group; except for the sham-operation group, the rats in the other groups were intervened with MCAO combined with solitary and chronic unpredictable mild stress (CUMS) to establish PSD model. In the electroacupuncture group, electroacupuncture was delivered at "Hegu" (LI 4) and "Taichong" (LR 3), with disperse-dense wave, 2 Hz/10 Hz in frequency, for 30 min in each intervention, once daily, for consecutive 21 days. Simultaneously, distilled water (0.01 L•kg-1•d-1) was administrated intragastrically. Fluoxetine solution (2.33 mg•kg-1•d-1) was given by gavage , once a day and for 21 days in the drug group. The same procedure of fixation and gavage with distilled water were adopted in the sham-operation group, the stroke group and the PSD group. Separately, before stroke modeling, after PSD modeling and after 21-day intervention, the consumption of sugar water and the scores of horizontal movement and vertical movement in open-field test were observed. After 21-day intervention, the content of colonic 5-HT was detected by immunohistochemical method, and that of fecal SCFAs was determined by gas chromatography mass spectrometry.@*RESULTS@#After PSD modeling, compared with the stroke group, the sugar water consumption, the horizontal movement scores and vertical movement scores of the open-field test were all reduced in the PSD group, the drug group and the electroacupuncture group (P<0.05). After 21-day intervention, the sugar water consumption and the scores of horizontal movement and vertical movement of the open-field test were increased in the drug group and the electroacupuncture group (P<0.05) when compared with the PSD group; and the horizontal movement score in the electroacupuncture group was lower than that of the drug group (P<0.05). Compared with the sham-operation group, the contents of total fecal SCFAs and acetic acid were lower in the stroke group (P<0.05), and the contents of colonic 5-HT and total fecal SCFAs, acetic acid, propionic acid and butyric acid were reduced in the PSD group (P<0.05). In comparison with the PSD group, the contents of colonic 5-HT and total fecal SCFAs, acetic acid and propionic acid were increased in the drug group and the electroacupuncture group (P<0.05); and the content of colonic 5-HT in the electroacupuncture group was lower than that of the drug group (P<0.05). The level of colonic 5-HT was positively correlated with the contents of total fecal SCFAs and propionic acid (r=0.424, P=0.005; r=0.427, P=0.004).@*CONCLUSION@#Electroacupuncture at "Siguan" points can relieve the depression-like behavior of PSD rats, and its underlying mechanism may be related to the regulation of fecal SCFAs, which affects the release of colonic 5-HT.
Subject(s)
Animals , Rats , Rats, Sprague-Dawley , Propionates , Serotonin , Depression/therapy , Electroacupuncture , Fatty Acids, Volatile , Stroke/complications , Acetic Acid , Butyric Acid , WaterABSTRACT
Objective:To investigate the effect of Clostridium butyricum on renal tissue of db/db mice and to explore its mechanism. Methods:Fourteen-week-old db/db mice were divided into db/db group( n=10) and db/db+ Cb group( n=7) according to random number table method. Age-matched db/m mice were selected as the normal control group. The db/m and db/db mice were administered 0.9% sodium chloride solution by gavage, while the db/db+ Cb mice were administered an equivalent amount of Clostridium butyricum solution by gavage for 8 weeks. Serum creatinine , fasting blood glucose, urinary albumin to creatinine ratio(ACR) and other biochemical indicators were also detected. HE staining was used to observe the pathological changes of kidney tissue. The expressions of peroxisome proliferators-activated receptor γ coactivator-1α(PGC-1α) mRNA were detected by realtime PCR, while the expressions of nuclear factor-κB(NF-κB), glucagon-like peptide 1 receptor(GLP-1R), and adenosine monophosphate-activated protein kinase(AMPK) in kidney tissue were determined by immunohistochemistry and Western blotting. The levels of intestinal flora, serum and fecal short-chain fatty acids(SCFAs) were measured by 16S rRNA, liquid chromatograph-mass spectrometer, and gas chromatograohy-mass spectrometry respectively. Results:Compared to db/db mice, db/db+ Cb mice showed improvement in general condition after supplementation with Clostridium butyricum. Fasting blood glucose, blood urea nitrogen, albumin-to-creatinine ratio(ACR), blood creatinine, and levels of interleukin-6(IL-6) in kidney tissue were reduced(all P<0.05). The pathology showed various degrees of amelioration of kidney tissue injury in mice. The expression of PGC-1α mRNA increased in kidney tissue( P<0.05). Decreased expression of NF-κB protein, as well as increased expression of GLP-1R and phosphorylated(p-)AMPK/AMPK protein(all P<0.05) were detected in kidney tissues. Clostridium butyricum modulated the composition of the gut microbiota with elevated total SCFAs in blood and feces. Conclusion:Clostridium butyricum increased the expression of GLP-1R in kidney tissue, promoted AMPK phosphorylation, and alleviated renal tissue damage in mice. This suggests that it may be associated with regulating the abundance of SCFA-producing bacterial populations.
ABSTRACT
ObjectiveTo explore the potential mechanism of Zuogui Jiangtang Tongmai prescription (ZJT) in the treatment of diabetes mellitus complicated with cerebral infarction (DM-CI) in rats based on the short-chain fatty acids (SCFAs)/G protein-coupled receptor 43 (GPR43)/glucagon-like peptide-1 (GLP-1)/GLP-1 receptor (GLP-1R) signaling pathway. MethodSixty SD rats were randomly divided into sham operation group, model group, low- and high-dose ZJT groups (12, 24 g·kg-1), western medicine group (140 mg·kg-1 pioglitazone metformin tablets + 27 mg·kg-1 enteric-coated aspirin tablets). Except for the sham operation group, all other groups were fed a high-sugar high-fat diet for 4 weeks and then subjected to intraperitoneal injection of 1% streptozotocin at 35 mg·kg-1 combined with middle cerebral artery occlusion (MCAO) to establish a DM-CI rat model. The corresponding interventions were performed with distilled water, low-dose ZJT, high-dose ZJT, pioglitazone metformin tablets, and enteric-coated aspirin tablets. After surgery, National Institutes of Health Stroke Scale (NIHSS) scoring and triphenyltetrazolium chloride (TTC) staining to measure the rat's cerebral infarct volume were carried out. Random blood glucose levels were measured, and hematoxylin-eosin (HE) staining was used to observe histopathological changes in rat brain tissues. Gas chromatography was employed to detect the content of SCFAs in the cecum contents. Enzyme-linked immunosorbent assay (ELISA) was adopted to measure serum GLP-1 level. Western blot was used to detect the protein expression of GPR43 in rat ileal tissues and GLP-1R in the ischemic brain tissues. ResultCompared with the sham operation group, the model group showed significantly increased NIHSS scores, random blood glucose levels, and cerebral infarct volumes (P<0.01), and significantly decreased SCFAs content, GLP-1 levels, and GPR43 and GLP-1R protein expression (P<0.01). Compared with the model group, the high-dose ZJT group and the western medicine group exhibited significantly reduced NIHSS scores, random blood glucose levels, and cerebral infarct volumes (P<0.05, P<0.01), and significantly increased SCFAs content, GLP-1 levels, and GPR43 and GLP-1R protein expression (P<0.01). ConclusionZJT can improve glucose metabolism disorder and reduce neurological damage in DM-CI rats, and its mechanism may be related to the increase in SCFAs content and the upregulation of the GPR43/GLP-1/GLP-1R signaling pathway.
ABSTRACT
Chronic pancreatitis (CP) is a progressive and irreversible fibroinflammatory disorder, accompanied by pancreatic exocrine insufficiency and dysregulated gut microbiota. Recently, accumulating evidence has supported a correlation between gut dysbiosis and CP development. However, whether gut microbiota dysbiosis contributes to CP pathogenesis remains unclear. Herein, an experimental CP was induced by repeated high-dose caerulein injections. The broad-spectrum antibiotics (ABX) and ABX targeting Gram-positive (G+) or Gram-negative bacteria (G-) were applied to explore the specific roles of these bacteria. Gut dysbiosis was observed in both mice and in CP patients, which was accompanied by a sharply reduced abundance for short-chain fatty acids (SCFAs)-producers, especially G+ bacteria. Broad-spectrum ABX exacerbated the severity of CP, as evidenced by aggravated pancreatic fibrosis and gut dysbiosis, especially the depletion of SCFAs-producing G+ bacteria. Additionally, depletion of SCFAs-producing G+ bacteria rather than G- bacteria intensified CP progression independent of TLR4, which was attenuated by supplementation with exogenous SCFAs. Finally, SCFAs modulated pancreatic fibrosis through inhibition of macrophage infiltration and M2 phenotype switching. The study supports a critical role for SCFAs-producing G+ bacteria in CP. Therefore, modulation of dietary-derived SCFAs or G+ SCFAs-producing bacteria may be considered a novel interventive approach for the management of CP.
ABSTRACT
Methamphetamine (Meth) abuse can cause serious mental disorders, including anxiety and depression. The gut microbiota is a crucial contributor to maintaining host mental health. Here, we aim to investigate if microbiota participate in Meth-induced mental disorders, and the potential mechanisms involved. Here, 15 mg/kg Meth resulted in anxiety- and depression-like behaviors of mice successfully and suppressed the Sigma-1 receptor (SIGMAR1)/BDNF/TRKB pathway in the hippocampus. Meanwhile, Meth impaired gut homeostasis by arousing the Toll-like receptor 4 (TLR4)-related colonic inflammation, disturbing the gut microbiome and reducing the microbiota-derived short-chain fatty acids (SCFAs). Moreover, fecal microbiota from Meth-administrated mice mediated the colonic inflammation and reproduced anxiety- and depression-like behaviors in recipients. Further, SCFAs supplementation optimized Meth-induced microbial dysbiosis, ameliorated colonic inflammation, and repressed anxiety- and depression-like behaviors. Finally, Sigmar1 knockout (Sigmar1-/-) repressed the BDNF/TRKB pathway and produced similar behavioral phenotypes with Meth exposure, and eliminated the anti-anxiety and -depression effects of SCFAs. The activation of SIGMAR1 with fluvoxamine attenuated Meth-induced anxiety- and depression-like behaviors. Our findings indicated that gut microbiota-derived SCFAs could optimize gut homeostasis, and ameliorate Meth-induced mental disorders in a SIGMAR1-dependent manner. This study confirms the crucial role of microbiota in Meth-related mental disorders and provides a potential preemptive therapy.
ABSTRACT
Genkwa Fols, Kansui Radix, and Euphorbiae Pekinensis Radix in Shizao Decoction(SZD) are toxic to intestinal tract. Jujubae Fructus in this prescription can alleviate the toxicity, but the mechanism is still unclear. Therefore, this study aims to explore the mechanism. To be specific, 40 normal Sprague-Dawley(SD) rats were classified into the normal group, high-dose and low-dose SZD groups, and high-dose and low-dose SZD without Jujubae Fructus(SZD-JF) groups. The SZD groups were given(ig) SZD, while SZD-JF groups received the decoction without Jujubae Fructus. The variation of body weight and spleen index were recorded. The patho-logical changes of intestinal tissue were observed based on hematoxylin and eosin(HE) staining. The content of malondialdehyde(MDA) and glutathione(GSH) and activity of superoxide dismutase(SOD) in intestinal tissue were measured to evaluate the intestinal injury. Fresh feces of rats were collected to detect intestinal flora structure by 16S ribosomal RNA gene(16S rDNA) sequencing technology. The content of fecal short chain fatty acids and fecal metabolites was determined by gas chromatography-mass spectrometer(GC-MS) and liquid chromatography-mass spectrometer ultra-fast liquid chromatography-quadrupole-time-of-flight mass spectrometer(UFLC-Q-TOF-MS), separately. Spearman's correlation analysis was employed to analyze the differential bacteria genera and differential metabolites. RESULTS:: showed that high-dose and low-dose SZD-JF groups had high content of MDA in intestinal tissue, low GSH content and SOD activity, short intestinal villi(P<0.05), low diversity and abundance of intestinal flora, variation in the intestinal flora structure, and low content of short chain fatty acids(P<0.05) compared with the normal group. Compared with high-dose and low-dose SZD-JF groups, high-dose and low-dose SZD groups displayed low content of MDA in intestinal tissue, high GSH content and SOD activity, recovery of the length of intestinal villi, increased abundance and diversity of intestinal flora, alleviation of dysbacteria, and recovery of the content of short chain fatty acids(P<0.05). According to the variation of intestinal flora and fecal metabolites after the addition of Jujubae Fructus, 6 differential bacterial genera(Lactobacillus, Butyricimonas, Clostridia_UCG-014, Prevotella, Escherichia-Shigella, Alistipes),4 differential short chain fatty acids(such as acetic acid, propionic acid, butyric acid, valeric acid) and 18 differential metabolites(such as urolithin A, lithocholic acid, and creatinine) were screened out. Beneficial bacteria such as Lactobacillus were in positive correlation with butyric acid and urolithin A(P<0.05). The pathogenic bacteria such as Escherichia-Shigella were in negative correlation with propionic acid and urolithin A(P<0.05). In summary, SZD-JF caused obvious intestinal injury to normal rats, which could lead to intestinal flora disorder. The addition of Jujubae Fructus can alleviate the disorder and relieve the injury by regulating intestinal flora and the metabolites. This study discusses the effect of Jujubae Fructus in relieving the intestinal injury caused by SZD and the mechanism from the perspective of intestinal flora-host metabolism, which is expected to serve as a reference for clinical application of this prescription.
Subject(s)
Rats , Animals , Rats, Sprague-Dawley , Propionates/pharmacology , Gastrointestinal Microbiome , Fatty Acids, Volatile/pharmacology , Butyrates/pharmacologyABSTRACT
Spinal cord injury (SCI) causes motor, sensory, and autonomic dysfunctions. The gut microbiome has an important role in SCI, while short-chain fatty acids (SCFAs) are one of the main bioactive mediators of microbiota. In the present study, we explored the effects of oral administration of exogenous SCFAs on the recovery of locomotor function and tissue repair in SCI. Allen's method was utilized to establish an SCI model in Sprague-Dawley (SD) rats. The animals received water containing a mixture of 150 mmol/L SCFAs after SCI. After 21 d of treatment, the Basso, Beattie, and Bresnahan (BBB) score increased, the regularity index improved, and the base of support (BOS) value declined. Spinal cord tissue inflammatory infiltration was alleviated, the spinal cord necrosis cavity was reduced, and the numbers of motor neurons and Nissl bodies were elevated. Enzyme-linked immunosorbent assay (ELISA), real-time quantitative polymerase chain reaction (qPCR), and immunohistochemistry assay revealed that the expression of interleukin (IL)-10 increased and that of IL-17 decreased in the spinal cord. SCFAs promoted gut homeostasis, induced intestinal T cells to shift toward an anti-inflammatory phenotype, and promoted regulatory T (Treg) cells to secrete IL-10, affecting Treg cells and IL-17+ γδ T cells in the spinal cord. Furthermore, we observed that Treg cells migrated from the gut to the spinal cord region after SCI. The above findings confirm that SCFAs can regulate Treg cells in the gut and affect the balance of Treg and IL-17+ γδ T cells in the spinal cord, which inhibits the inflammatory response and promotes the motor function in SCI rats. Our findings suggest that there is a relationship among gut, spinal cord, and immune cells, and the "gut-spinal cord-immune" axis may be one of the mechanisms regulating neural repair after SCI.
Subject(s)
Animals , Rats , Interleukin-17 , Rats, Sprague-Dawley , Recovery of Function , Spinal Cord Injuries/drug therapy , T-Lymphocytes, Regulatory , Receptors, Antigen, T-Cell, gamma-delta/immunologyABSTRACT
This study aimed to empirically evaluate the adjustment quality of two stoichiometric models of methane production from diets that used different rumen fermentation modulators. We used the models proposed by Moss et al. (2000) and Blümmel et al. (1997). The data set consisted of 169 observations of in vitro methane production and volatile fatty acids (acetate, propionate, and butyrate) from dissertations, theses, and scientific articles. The model's adequacy evaluation was only possible through combination of several statistical analyzes. The models were unable to predict the enteric methane precisely and accurately. Despite this, the model proposed by Moss et al. (2000) showed a better fit based on the mean bias (% of observed, MB), MEF, RMSEP, Cb and CCC measures compared to the model proposed by Blümmel et al. (1997). However, both models presented strong evidence against the general hypothesis H0: a = 0 & b = 1. Thus, the model proposed by MOSS et al. (2000) was more efficient, whereas the model by Blümmel et al. (1997) showed a better fit for diets with high availability of H2.
Subject(s)
Empirical Research , Fatty Acids, VolatileABSTRACT
Berberine(BBR),an isoquinoline alkaloid,has been found in many plants,such as Coptis chinensis Franch and Phellodendron chinense Schneid.Although BBR has a wide spectrum of pharmacological effects,its oral bioavailability is extremely low.In recent years,gut microbiota has emerged as a cynosure to un-derstand the mechanisms of action of herbal compounds.Numerous studies have demonstrated that due to its low bioavailability,BBR can interact with the gut microbiota,thereby exhibiting altered pharma-cological effects.However,no systematic and comprehensive review has summarized these interactions and their corresponding influences on pharmacological effects.Here,we describe the direct interactive relationships between BBR and gut microbiota,including regulation of gut microbiota composition and metabolism by BBR and metabolization of BBR by gut microbiota.In addition,the complex interactions between gut microbiota and BBR as well as the side effects and personalized use of BBR are discussed.Furthermore,we provide our viewpoint on future research directions regarding BBR and gut microbiota.This review not only helps to explain the mechanisms underlying BBR activity but also provides support for the rational use of BBR in clinical practice.