ABSTRACT
The goal of this study was to determine whether gypenosides (GPS) exert protective effects against dopaminergic neuronal cell death in a 6-hydroxydopamine (OHDA)-lesioned rat model of Parkinson's disease (PD) with or without long-term 3,4-dihydroxyphenylalanine (L-DOPA) treatment. Rats were injected with 6-OHDA in the substantia nigra to induce PD-like symptoms; 14 days after injection, groups of 6-OHDA-lesioned animals were treated for 21 days with GPS (25 or 50 mg/kg) and/or L-DOPA (20 mg/kg). Dopaminergic neuronal cell death was assessed by counting tyrosine hydroxylase (TH)-immunopositive cells in the substantia nigra and measuring levels of dopamine, norepinephrine, 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) in the striatum. Dopaminergic neuronal cell death induced by 6-OHDA lesions was ameliorated by GPS treatment (50 mg/kg). L-DOPA treatment exacerbated 6-OHDA-induced dopaminergic neuronal cell death; however, these effects were partially reversed by GPS treatment (25 and 50 mg/kg). These results suggest that GPS treatment is protective against dopaminergic neuronal cell death in a 6-OHDA-lesioned rat model of PD with long-term L-DOPA treatment. Therefore, GPS may be useful as a phytotherapeutic agent for the treatment of PD.
Subject(s)
Animals , Rats , 3,4-Dihydroxyphenylacetic Acid , Cell Death , Dihydroxyphenylalanine , Dopamine , Dopaminergic Neurons , Homovanillic Acid , Levodopa , Models, Animal , Norepinephrine , Oxidopamine , Parkinson Disease , Substantia Nigra , Tyrosine 3-MonooxygenaseABSTRACT
The objective of the present study was to determine whether lesion of the subthalamic nucleus (STN) promoted by N-methyl-D-aspartate (NMDA) would rescue nigrostriatal dopaminergic neurons after unilateral 6-hydroxydopamine (6-OHDA) injection into the medial forebrain bundle (MFB). Initially, 16 mg 6-OHDA (6-OHDA group) or vehicle (artificial cerebrospinal fluid - aCSF; Sham group) was infused into the right MFB of adult male Wistar rats. Fifteen days after surgery, the 6-OHDA and SHAM groups were randomly subdivided and received ipsilateral injection of either 60 mM NMDA or aCSF in the right STN. Additionally, a control group was not submitted to stereotaxic surgery. Five groups of rats were studied: 6-OHDA/NMDA, 6-OHDA/Sham, Sham/NMDA, Sham/Sham, and Control. Fourteen days after injection of 6-OHDA, rats were submitted to the rotational test induced by apomorphine (0.1 mg/kg, ip) and to the open-field test. The same tests were performed again 14 days after NMDA-induced lesion of the STN. The STN lesion reduced the contralateral turns induced by apomorphine and blocked the progression of motor impairment in the open-field test in 6-OHDA-treated rats. However, lesion of the STN did not prevent the reduction of striatal concentrations of dopamine and metabolites or the number of nigrostriatal dopaminergic neurons after 6-OHDA lesion. Therefore, STN lesion is able to reverse motor deficits after severe 6-OHDA-induced lesion of the nigrostriatal pathway, but does not protect or rescue dopaminergic neurons in the substantia nigra pars compacta.