Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters








Year range
1.
Acta Pharmaceutica Sinica B ; (6): 3740-3755, 2021.
Article in English | WPRIM | ID: wpr-922437

ABSTRACT

Acetaminophen (APAP) is a widely used analgesic and antipyretic drug, which is safe at therapeutic doses but can cause severe liver injury and even liver failure after overdoses. The mouse model of APAP hepatotoxicity recapitulates closely the human pathophysiology. As a result, this clinically relevant model is frequently used to study mechanisms of drug-induced liver injury and even more so to test potential therapeutic interventions. However, the complexity of the model requires a thorough understanding of the pathophysiology to obtain valid results and mechanistic information that is translatable to the clinic. However, many studies using this model are flawed, which jeopardizes the scientific and clinical relevance. The purpose of this review is to provide a framework of the model where mechanistically sound and clinically relevant data can be obtained. The discussion provides insight into the injury mechanisms and how to study it including the critical roles of drug metabolism, mitochondrial dysfunction, necrotic cell death, autophagy and the sterile inflammatory response. In addition, the most frequently made mistakes when using this model are discussed. Thus, considering these recommendations when studying APAP hepatotoxicity will facilitate the discovery of more clinically relevant interventions.

2.
Article in Chinese | WPRIM | ID: wpr-887992

ABSTRACT

This study aims to investigate metabolic activities of psoralidin in human liver microsomes( HLM) and intestinal microsomes( HIM),and to identify cytochrome P450 enzymes( CYPs) and UDP-glucuronosyl transferases( UGTs) involved in psoralidin metabolism as well as species differences in the in vitro metabolism of psoralen. First,after incubation serial of psoralidin solutions with nicotinamide adenine dinucleotide phosphate( NADPH) or uridine 5'-diphosphate-glucuronic acid( UDPGA)-supplemented HLM or HIM,two oxidic products( M1 and M2) and two conjugated glucuronides( G1 and G2) were produced in HLM-mediated incubation system,while only M1 and G1 were detected in HIM-supplemented system. The CLintfor M1 in HLM and HIM were 104. 3,and57. 6 μL·min~(-1)·mg~(-1),respectively,while those for G1 were 543. 3,and 75. 9 μL·min~(-1)·mg~(-1),respectively. Furthermore,reaction phenotyping was performed to identify the main contributors to psoralidin metabolism after incubation of psoralidin with NADPH-supplemented twelve CYP isozymes( or UDPGA-supplemented twelve UGT enzymes),respectively. The results showed that CYP1 A1( 39. 5 μL·min~(-1)·mg~(-1)),CYP2 C8( 88. 0 μL·min~(-1)·mg~(-1)),CYP2 C19( 166. 7 μL·min~(-1)·mg~(-1)),and CYP2 D6( 9. 1 μL·min~(-1)·mg~(-1)) were identified as the main CYP isoforms for M1,whereas CYP2 C19( 42. 0 μL·min~(-1)·mg~(-1)) participated more in producing M2. In addition,UGT1 A1( 1 184. 4 μL·min~(-1)·mg~(-1)),UGT1 A7( 922. 8 μL·min~(-1)·mg~(-1)),UGT1 A8( 133. 0 μL·min~(-1)·mg~(-1)),UGT1 A9( 348. 6 μL·min~(-1)·mg~(-1)) and UGT2 B7( 118. 7 μL·min~(-1)·mg~(-1)) played important roles in the generation of G1,while UGT1 A9( 111. 3 μL·min~(-1)·mg~(-1)) was regarded as the key UGT isozyme for G2. Moreover,different concentrations of psoralidin were incubated with monkey liver microsomes( MkLM),rat liver microsomes( RLM),mice liver microsomes( MLM),dog liver microsomes( DLM) and mini-pig liver microsomes( MpLM),respectively. The obtained CLintwere used to evaluate the species differences.Phase Ⅰ metabolism and glucuronidation of psoralidinby liver microsomes showed significant species differences. In general,psoralidin underwent efficient hepatic and intestinal metabolisms. CYP1 A1,CYP2 C8,CYP2 C19,CYP2 D6 and UGT1 A1,UGT1 A7,UGT1 A8,UGT1 A9,UGT2 B7 were identified as the main contributors responsible for phase Ⅰ metabolism and glucuronidation,respectively. Rat and mini-pig were considered as the appropriate model animals to investigate phase Ⅰ metabolism and glucuronidation,respectively.


Subject(s)
Animals , Benzofurans , Coumarins , Dogs , Glucuronides , Glucuronosyltransferase/metabolism , Kinetics , Mice , Microsomes, Liver/metabolism , Phenotype , Rats , Species Specificity , Swine , Swine, Miniature/metabolism
3.
Acta Pharmaceutica Sinica ; (12): 1727-1738, 2021.
Article in Chinese | WPRIM | ID: wpr-881568

ABSTRACT

In the research and development of new drugs, it is very important to investigate the in vitro metabolism of candidate drugs. Traditional models such as liver microsomes have many limitations, while the in vitro model of recombinant human drug metabolizing enzymes is considered as an important and useful approach because of its convenient access, stable activity and low cost. In this study, six major human UDP-glucuronosyltransferases (UGTs) genes (UGT1A1, 1A3, 1A4, 1A6, 1A9 and 2B7) were cloned from human liver cDNA and heterologously expressed in Saccharomyces cerevisiae and baculovirus-infected insect cell. UGT1A1, 1A3, 1A6 and 1A9 were successfully expressed in yeast and showed glucuronidation activity against a variety of different structural types of substrates, but their activities were low. All six UGTs were successfully expressed and exhibited significantly improved glucuronidation activity when Trichopolusia ni cells BTI-TN5B1-4 (High Five) were used as the host. The recombinant human UGTs expressed in insect cells can catalyze the glucuronidation of their specific substrates, and the glucuronidation products were synthesized at milligram-scale with yields of 13%-66% for the first time, of which the structures were identified via MS, 1H NMR, and 13C NMR spectroscopic analysis. Above all, the recombinant human UGTs yeast and insect cell expression systems constructed in this study can be used for in vitro metabolism evaluation in the early stage of new drugs research and development, and also provide a new tool for the synthesis of glucuronide metabolites.

4.
Acta Pharmaceutica Sinica ; (12): 1108-1114, 2019.
Article in Chinese | WPRIM | ID: wpr-780185

ABSTRACT

CAT3 is a promising anti-brain tumor agent that has significant anti-tumor activity on Daoy or U87MG orthotopic xenograft in nude mice. This study was carried out to investigate the metabolic profiles of CAT3 in mouse/dog/human blood and microsome as well as in humanized recombinant enzymes. All animal care and experimental procedures were reviewed and approved by the Animal Ethics Committee of Chinese Academy of Medical Sciences. Our findings showed that CAT3 could be hydrolyzed to active metabolite PF403 by carboxylesterase, butyrylcholinesterase and serine hydrolase in mouse/dog/ human blood. PF403 could be further metabolized to M1 oxidative dehydration product, M2 double oxidation dehydration product, M3 methylation oxidative dehydration product, M4 oxidation product and M5 demethylation product, which were mainly catalyzed by CYP1A2, 1A1, 2C9 and 3A4, and slightly by CYP2B6, 2C8, 2C19 and 2D6. Besides oxidative metabolism, PF403 also was transformed into glucuronylation metabolites GLU-PF403 by Phase II enzymes UGT1A1, 1A3 and 1A9. Taken together, the metabolism of CAT3 was a multiple enzyme catalytic reaction. These results could provide valuable information for potential enzyme-mediated DDI in clinic studies.

5.
Chinese Pharmaceutical Journal ; (24): 589-593, 2018.
Article in Chinese | WPRIM | ID: wpr-858360

ABSTRACT

OBJECTIVE: To investigate the hepatic toxicity of 8 monomers in Polygonum multiflorum using a combination of UDPglucuronic acid transferase 1A1(UGT1A1 enzyme). METHODS: Bilirubin was used as the substrate for UGT1A1. Incubation method in RLM in vitro was adopted to test the apparent inhibition constants(Ki) of different components. Furthermore the structure-activity relationship between the 8 components and UGT1A1 was analyzed. RESULTS: The inhibition effects on UGT1A1 enzyme of the 8 components were in the following sequence: emodin-8-O-glc > emodin > citreorosein > (+) -catechin > gallic acid > physcion > rhein > emodin-6-O-glc. Moreover, there was a structure-activity relationship, and it was presumed that the 6-position hydroxyl group is an active and necessary group. CONCLUSION: The established method in vitro is stable and feasible. Experimental results shows that the enzyme inhibition has structural selectivity, which provides an experimental basis for predicting the enzyme inhibition activity of the analogues of components of Polygonum multiflorum.

6.
Acta Pharmaceutica Sinica ; (12): 1705-1714, 2017.
Article in Chinese | WPRIM | ID: wpr-779779

ABSTRACT

This study was designed to investigate the inhibitory effects of regorafenib (REG) on the catalytic activities of 12 kinds of human UGT isoforms and human liver microsomes (HLM) in vitro. The broader potential of REG to perpetrate drug-drug interactions (DDI) arising from UGT enzyme inhibition is predicted by in vitro-vivo extrapolation (IV-IVE). Fifty mixed HLM and 12 kinds of recombinant UGTs were utilized as enzyme sources to evaluation the inhibitory effects of REG against UGTs. 4-Methylumbelliferone (4-MU) as a nonselective substrate of UGTs except for UGT1A4, N-(3-carboxypropyl)-4-hydroxy-1,8-napht-halimide (NCHN) and N-butyl-4-(4-hydroxyphenyl)-1,8-naphthalimide (NPHN) as the specific fluorescent substrate of UGT1A1, and trifluoperazine (TFP) as the specific substrate of UGT1A4. The half maximal inhibitory concentration (IC50) was calculated via the nonlinear regression analysis using Graphpad Prism 6.0, the inhibition kinetic types were selected and evaluated based on the intersection location of Lineweaver-Burk plot and Dixon plot, and Ki values were determined by the second plot of slopes. The potential DDI risk based on UGT1A1 inhibition was also evaluated through the in vitro parameters. The results demonstrated that REG displayed strong inhibitory effects against UGT1A1, 1A7, 1A9, and 2B7. The IC50 values were from 0.15 to 6.6 μmol·L-1 and Ki values from 0.027 to 14 μmol·L-1. The REG exerted competitive inhibition against UGT1A1-mediated 4-MU-O-glucuronidation and UGT1A1-mediated NPHN-O-glucuronidation, while the inhibition of NCHN-4-O-glucuronide by REG was suited to noncompetitive inhibition in both HLM and recombinant UGT1A1. Likewise, REG exhibited a mixed efficacy in inhibition of UGT1A7-, UGT1A9-, and UGT2B7-catalyzed 4-MU-O-glucuronidation. The AUC ratio of UGT1A1 specific substrates NPHN and NCHN can be increased by 101% to 302% and 13% to 109%, respectively. These results suggest that much caution should be exercised when REG is co-administered with UGT1A1 substrates.

7.
Acta Pharmaceutica Sinica B ; (6): 106-112, 2015.
Article in English | WPRIM | ID: wpr-329686

ABSTRACT

The drug metabolism is a biochemical process on modification of pharmaceutical substances through specialized enzymatic systems. Changes in the expression of drug-metabolizing enzyme genes can affect drug metabolism. Recently, epigenetic regulation of drug-metabolizing enzyme genes has emerged as an important mechanism. Epigenetic regulation refers to heritable factors of genomic modifications that do not involve changes in DNA sequence. Examples of such modifications include DNA methylation, histone modifications, and non-coding RNAs. This review examines the widespread effect of epigenetic regulations on genes involved in drug metabolism, and also suggests a network perspective of epigenetic regulation. The epigenetic mechanisms have important clinical implications and may provide insights into effective drug development and improve safety of drug therapy.

SELECTION OF CITATIONS
SEARCH DETAIL