Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Article in Chinese | WPRIM | ID: wpr-821965


@#In recent years, due to precise control of the amorphous mineral precursor in the demineralization of dentine collagen fibers in orderly deposition, forming apatite crystals similar to the natural mineralized dentin, the bottom-up remineralization approach which does not depend on the existence of seed crystallites, dentin biomimetic mineralization techniques gradually become a hotspot in the research field of restoration of demineralized dentin caused by dental caries. This paper reviews the changing concepts and practices of the remineralization of demineralized dentin, emphasizing biomimetic remineralization studies. The results of the literature review show that the traditional dentin remineralization method is usually a disordered mixture of demineralized dentin and minerals, so mineralized dentin is not comparable to natural mineralized dentin in terms of the morphological characteristics and mechanical properties. With its gradual increase in recent years, dentine biomimetic mineralization technology perfectly resembles the minerals in the dentin overlapping sequence arranged with the dentine collagen fiber structure characteristics, leading to greatly improved microstructural, physical and chemical properties. As a result, dentine biomimetic mineralization technology is expected to achieve new breakthroughs in the fields of resin-dentin bonding mixing layers and the decay of dentin. At present, the technical obstacles that need to be overcome in the clinical application of the biomimetic remineralization of dentin are how to continuously supplement all the active ingredients needed for mineralization in the process of remineralization and how to keep the mechanical properties of the parent material unchanged while slowly releasing all ingredients. Researchers have successively proposed three-step transportation of the biomimetic remineralization of raw materials, as well as the preparation of mineralization precursors stabilized by polymers in advance and the reuse of mesoporous silicon nanomaterials for the transportation of the mineralized ingredient system. The concept described above provides the preliminary in vitro experimental basis for the transformation of the biomimetic remineralization strategy of dentin in clinical applications.

Actas odontol ; 12(2): 12-21, dic. 2015.
Article in Spanish | LILACS, BNUY, BNUY-Odon | ID: lil-790154


Las propiedades mecánicas del colágeno se deben a agentes intrínsecos de entrecruzamiento [Al-Ammar et al, 2009]. El aumento en el número de enlaces de la molécula de colágeno mejora su estabilidad e integridad, colaborando con el mantenimiento de propiedades adecuadas de la unión adhesiva a lo largo del tiempo [Bedran-Russo et al, 2009; Breschi et al, 2008]. Existen varios enfoques que permiten modificar el sustrato dentinario mediante la promoción de la formación de enlaces exógenos, con el objetivo de aumentar la resistencia de la red de colágeno [Bedran-Russo et al, 2007; Bedran-Russo et al, 2008]. Estos enfoques se dividen en métodos mecánicos [Bedran-Russo et al, 2007; Bedran-Russo et al, 2008; Castellan et al, 2010; Han et al, 2003] y método fotoxidativo [Cova et al, 2011]. Dentro de los primeros, los agentes reticuladores de origen natural son capaces de estabilizar el colágeno de la dentina [Bedran-Russo et al, 2007] sin afectar la resistencia de la unión adhesiva y sin generar toxicidad. Sin embargo, el uso de estos agentes por sí solo no permite asegurar la estabilidad de la unión adhesiva a lo largo del tiempo; porque como es sabido, la longevidad de dicha unión no depende únicamente de las características del sustrato, sino también de propiedades inherentes al sistema adhesivo por un lado, y de la presencia de humedad por otro.

The mechanical properties of collagen are due to intrinsic crosslinking agents [Al-Ammar et al, 2009]. The increase in the number of links of the collagen molecule improves its stability and integrity, collaborating with the maintenance of adequate adhesive bonding properties over time [Bedran-Russo et al, 2009; Breschi et al, 2008]. There are several approaches for modifying the dentin substrate by promoting the formation of exogenous links, in order to increase the strength of the collagen network [Bedran-Russo et al, 2007; Bedran-Russo et al, 2008]. These approaches are divided into mechanical methods [Bedran-Russo et al, 2007; Bedran-Russo et al, 2008; Castellan et al, 2010; Han et al, 2003] and foto oxidating method [Cova et al, 2011]. Within the first, the naturally occurring crosslinking agents are capable of stabilizing the dentin collagen [Bedran-Russo et al, 2007] without affecting the strength of the adhesive bond and without generating any toxicity. However, the use of these agents alone does not ensure the stability of the adhesive bond over time; because as it is known, the longevity of such binding does not only depend on the substrate’s characteristics, but also on the adhesive system’s properties on one side, and the presence of moisture on the other

Humans , Dentin , Matrix Metalloproteinase Inhibitors , Cross-Linking Reagents , Dental Bonding , Adhesives , Biomimetics , Collagen , Tooth Remineralization/methods
Article in Korean | WPRIM | ID: wpr-182033


The limited durability of resin-dentin bonds severely compromises the longevity of composite resin restorations. Resin-dentin bond degradation might occur via degradation of water-rich and resin sparse collagen matrices by host-derived matrix metalloproteinases (MMPs). This review article provides overview of current knowledge of the role of MMPs in dentin matrix degradation and four experimental strategies for extending the longevity of resin-dentin bonds. They include: (1) the use of broad-spectrum inhibitors of MMPs, (2) the use of cross-linking agents for silencing the activities of MMPs, (3) ethanol wet-bonding with hydrophobic resin, (4) biomimetic remineralization of water-filled collagen matrix. A combination of these strategies will be able to overcome the limitations in resin-dentin adhesion.

Biomimetics , Chlorhexidine , Collagen , Dentin , Ethanol , Longevity , Matrix Metalloproteinases