ABSTRACT
4-(Cytidine 5′-diphospho)-2-C-methyl-D-erythritol kinase (CMK) was one of the key enzymes in the methylerythritol-4-phosphate (MEP) pathway to generate terpenoids. In this study, based on the transcriptome data of Atractylodes lancea, the sequence of the CMK gene was cloned, named AlCMK (GenBank accession number OM283293). The results showed that AlCMK contains a 1 230 bp open reading frame (ORF) encoding 409 amino acids. The deduced protein had a theoretical molecular weight of 44 752.53 and an isoelectric point of 6.67. Transmembrane structure analysis showed that there was no transmembrane structure, and the secondary structure of AlCMK was predicted to be mainly composed of random coil. Homologous alignment revealed that AlCMK shared high sequence identity with the CMK proteins of Tanacetum cinerariifolium, Osmanthus fragrans, Eucommia ulmoides, Lonicera japonica and Salvia miltiorrhiza. Phylogenetic analysis indicated that AlCMK protein had the higher homology with CMK protein of Compositae. The pET-32a-AlCMK prokaryotic expression vector was constructed and a fusion protein with molecular mass of about 65 kDa was expressed in the E. coli BL21 (DE3). The qRT-PCR was used to analyze the expression pattern of AlCMK gene in different tissues and after MeJA treatment. Meanwhile, the enzyme activity was determined by ELISA kit. The results showed that AlCMK gene was tissue-expressed in different origins and its expression was induced by MeJA, and the results of the enzyme activity assay showed that the AlCMK enzyme activity in different regions was higher in the leaves. The subcellular localization showed that AlCMK was located in the chloroplast. This study provides a reference for further elucidating the biological function of AlCMK gene in terpenoid synthesis pathway in Atractylodes lancea.
ABSTRACT
WRKY, a class of conserved transcription factors in plants, plays important roles in plant growth, development and secondary metabolism. In the present study, 65 WRKY members were identified from de novo transcriptome sequencing data of three different tissues (root, stems and leaves) of Baphicacanthus cusia. BcWRKY proteins contained from 221 to 706 amino acids and the isoelectric point is from 4.68 to 9.68. Molecular weights range from 25 711.8 to 75 475 Da. The main secondary structures of BcWRKYs protein are random coil. A subcellular localization prediction indicated that the putative BcWRKY proteins were enriched in the nuclear region. Phylogenetic analysis showed that BcWRKYs could be categorized into three groups and five subgroups (Group IIa, Group IIb, Group IIc, Group IId and Group IIe) in Group II. Structural analysis found that all BcWRKY proteins contained a highly conserved motif WRKYGQK. Finally, the transcriptional profiles of ten BcWRKY genes highly expressed in root, stem and leaf tissues under abscisic acid (ABA), methyl jasmonate (MeJA), or salicylic acid (SA) treatment were systematically investigated using qRT-PCR analysis. Results showed that a total of ten BcWRKY genes were differentially expressed in response to ABA, MeJA, and SA treatment. This work would be provided a basis for further elucidating the molecular mechanism of WRKY transcription factors in the biosynthesis of indole alkaloids in B. cusia.
ABSTRACT
ObjectiveThe type 2C protein phosphatases (PP2C) are involved in numerous plant signal transduction pathways. They mainly participate in plant stress response and regulate second metabolites biosynthesis via negatively regulating MAPK signaling pathway. Herein,we were to identify and analyze PP2C (CsPP2C) gene family from hemp genome,in hope of providing comprehensive insights for studying CsPP2C function during the development of hemp. MethodMolecular Evolutionary Genetics Analysis (MAGA)-X was used to construct phylogenetic tree. Expert Protein Analysis System (ExPASy),WoLF PSORT,Multiple EM for Motif Elicitation (MEME),Batch Conserved Domain Search (Batch-CD-Search),PlantCare,and TBtools were used,respectively,to predict CsPP2C physicochemical properties,subcellular localization,conserved motifs,protein structure,cis-element in promoter and collinearity with Arabidopsis PP2C. Cannabis sativa transcriptome and Real-time polymerase chain reaction(Real-time PCR) were used to analyze and verify gene expressions,respectively. ResultFifty-two CsPP2C with conserved domains were identified from the entire genome of hemp,encoding proteins ranging from 244 to 1 089 aa in length and with molecular weights ranging from 26.76 to 122.53 kDa. Those genes were mainly distributed in the nucleus,cytoplasm and chloroplast. The 47 CsPP2C were divided into 10 subfamilies,and the remaining 5 were not clustered. Seven pairs of homologous genes between hemp and Arabidopsis thaliana were identified according to collinear analysis. The light-responsive elements and abscisic acid elements are most abundant in the prediction. The gene expression heat map showed varied expression pattern of CsPP2C in different tissues. Real-time PCR results of three CsPP2C were consistent with transcriptome data. Moreover,alternative splicing analysis showed that some CsPP2C had alternative-splicing genes during evolution. ConclusionWe predicted and analyzed CsPP2C gene family in genomic scale and showed that CsPP2C are involved in many biological processes,whereby provides foundation for CsPP2C functional study.
ABSTRACT
ObjectiveThe type 2C protein phosphatases (PP2C) are involved in numerous plant signal transduction pathways. They mainly participate in plant stress response and regulate second metabolites biosynthesis via negatively regulating MAPK signaling pathway. Herein,we were to identify and analyze PP2C (CsPP2C) gene family from hemp genome,in hope of providing comprehensive insights for studying CsPP2C function during the development of hemp. MethodMolecular Evolutionary Genetics Analysis (MAGA)-X was used to construct phylogenetic tree. Expert Protein Analysis System (ExPASy),WoLF PSORT,Multiple EM for Motif Elicitation (MEME),Batch Conserved Domain Search (Batch-CD-Search),PlantCare,and TBtools were used,respectively,to predict CsPP2C physicochemical properties,subcellular localization,conserved motifs,protein structure,cis-element in promoter and collinearity with Arabidopsis PP2C. Cannabis sativa transcriptome and Real-time polymerase chain reaction(Real-time PCR) were used to analyze and verify gene expressions,respectively. ResultFifty-two CsPP2C with conserved domains were identified from the entire genome of hemp,encoding proteins ranging from 244 to 1 089 aa in length and with molecular weights ranging from 26.76 to 122.53 kDa. Those genes were mainly distributed in the nucleus,cytoplasm and chloroplast. The 47 CsPP2C were divided into 10 subfamilies,and the remaining 5 were not clustered. Seven pairs of homologous genes between hemp and Arabidopsis thaliana were identified according to collinear analysis. The light-responsive elements and abscisic acid elements are most abundant in the prediction. The gene expression heat map showed varied expression pattern of CsPP2C in different tissues. Real-time PCR results of three CsPP2C were consistent with transcriptome data. Moreover,alternative splicing analysis showed that some CsPP2C had alternative-splicing genes during evolution. ConclusionWe predicted and analyzed CsPP2C gene family in genomic scale and showed that CsPP2C are involved in many biological processes,whereby provides foundation for CsPP2C functional study.
ABSTRACT
MYB transcription factors, one of the largest transcription factor families in plants, play an important role in signal transduction, plant growth and plant resistance. In this study a full-length cDNA of the PnMYB1R1 gene was cloned from Panax notoginseng. Sequence analysis, prokaryotic expression and purification, subcellular location, transcriptional activity analysis, tissue-specific analysis and expression analysis under different abiotic stresses was performed. The open reading frame (ORF) of PnMYB1R gene was 738 bp, encoding a protein of 245 amino acids with a predicted molecular mass (MW) of 27.0 kD. The sequence analysis and polygenetic analysis indicated that the PnMYB1R1 protein contains a conserved R3 domain, belonging to TRF-like protein in 1R-MYB-type transcription factors. The recombinant PnMYB1R1 protein was expressed in Escherichia coli BL21(DE3) cells using the prokaryotic expression vector pET28a-PnMYB1R1 and was purified. Subcellular localization analysis showed that PnMYB1R1 was localized in the nucleus. Transcriptional activity analysis indicated that the PnMYB1R1 transcription factor has transcriptional activation activity. Expression analysis indicated that PnMYB1R1 was primarily expressed in roots, followed by stems and leaves, and then rootlets. The expression level of PnMYB1R1 in root, stems, leaves and rootlets was influenced by salt, low temperature and drought treatment, while the abundance of PnMYB1R1 was significantly induced by salt stress in these tissues. These results provide valuable insights into the role of 1R-MYB transcription factors in plant defense.
ABSTRACT
Licorice, one of the most commonly used medicinal materials in China, grows mainly in arid and semi-arid regions and has important economic and ecological values. Basic leucine zipper (bZIP) transcription factors in plants play an important role in regulating biological or abiotic stress responses, growth, and secondary metabolite synthesis. bZIP transcription factors in the published whole genome database of Glycyrrhiza uralensis were identified using bZIP sequences found in Arabidopsis thaliana genome as reference, and ABA-dependent bZIP genes were identified by using Illumina high-throughput sequencing. The physical and chemical properties, structure of the encoded proteins, and the gene expression patterns with exogenous ABA stress were analyzed. A total of 69 bZIP transcription factor genes were identified in G. uralensis, named Gubzip1-69, and they were divided into 10 subfamilies (A-I and S) according to their similarity to bZIPs of A. thaliana. By calculating the relative expression levels of the 69 GubZIPs genes under different concentrations of exogenous ABA stress, genes that may be involved in the regulation of ABA signaling pathways were identified, namely GubZIP1, GubZIP5, GubZIP8, GubZIP30, GubZIP33 and GubZIP56. The results of expression pattern analysis of these GubZIPs genes under exogenous ABA stress showed that the expression pattern of GubZIPs genes changed significantly with 50 mg·L-1 ABA. The relative expression levels of these genes decreased 3 h after treatment, and gradually increased 6 h after treatment. Except for GubZIP8, the relative expression levels of these genes were significantly increased after 12 h. Further research on the function of bZIP transcription factors of G. uralensis and elucidating their regulatory mechanisms should be of interest and will provide a scientific basis for cultivating high-quality cultivars of G. uralensis through molecular breeding methods.
ABSTRACT
A large number of putative risk genes for autism spectrum disorder (ASD) have been reported. The functions of most of these susceptibility genes in developing brains remain unknown, and causal relationships between their variation and autism traits have not been established. The aim of this study was to predict putative risk genes at the whole-genome level based on the analysis of gene co-expression with a group of high-confidence ASD risk genes (hcASDs). The results showed that three gene features - gene size, mRNA abundance, and guanine-cytosine content - affect the genome-wide co-expression profiles of hcASDs. To circumvent the interference of these features in gene co-expression analysis, we developed a method to determine whether a gene is significantly co-expressed with hcASDs by statistically comparing the co-expression profile of this gene with hcASDs to that of this gene with permuted gene sets of feature-matched genes. This method is referred to as "matched-gene co-expression analysis" (MGCA). With MGCA, we demonstrated the convergence in developmental expression profiles of hcASDs and improved the efficacy of risk gene prediction. The results of analysis of two recently-reported ASD candidate genes, CDH11 and CDH9, suggested the involvement of CDH11, but not CDH9, in ASD. Consistent with this prediction, behavioral studies showed that Cdh11-null mice, but not Cdh9-null mice, have multiple autism-like behavioral alterations. This study highlights the power of MGCA in revealing ASD-associated genes and the potential role of CDH11 in ASD.
Subject(s)
Animals , Autism Spectrum Disorder/genetics , Brain , Cadherins/genetics , Gene Expression , Mice , Mice, KnockoutABSTRACT
OBJECTIVE@#To study the expression profiles changes of miRNA in apheresis platelets after 1, 3 and 5 days of storage.@*METHODS@#The apheresis platelets were collected from 20 volunteer blood donors. After mixing fully, the platelets were stored in a shaker with (22±2) ℃ horizontal oscillation. The samples were taken on the 1st, 3rd and 5th day, and used to sequence for miRNAs by DNA nanoball (DNB) sequencing technology, which were named as C_1, C_3 and C_5, respectively. The expression level of platelets miRNA was standardized by transcripts per kilobase million (TPM) algorithm. MiRNAs with P-value < 0.001 and the expression difference of more than two times were considered as significant difference between two groups. The expression of miRNAs was verified by real-time fluorescence quantitative PCR (RT-qPCR).@*RESULTS@#By DNB sequencing, there were 688, 730, and 679 platelet miRNAs expressed in C_1, C_3 and C_5 group, respectively. Cluster analysis showed that the expression profile of miRNAs changed significantly. The expression level of the first 20 high abundance miRNAs was about 4/5 of the total amounts of expressed miRNAs in each group, which the top five miRNAs were miR-21-5p, miR-26a-5p, miR-199a-3p, miR-126-3p, and let-7f-5p. The correlation of high abundance platelet miRNAs among the three groups was high (R2=0.876, R2=0.979, R2=0.937, respectively) and the differences were not statistically significant (P>0.05). Compared with the differential expression of platelet miRNAs with more than 1 000 TPM in the C_3 and C_1 group, there were 6 differentially expressed miRNAs, including 3 up-regulated (miR-146a-5p, miR-379-5p, and miR-486-5p) and 3 down-regulated (miR-652-3p, miR-142-5p, and miR-7-5p). While in the C_5 and C_1 group, there were 4 differentially expressed miRNAs, including 2 up-regulated (miR-146a-5p and let-7b-5p) and 2 down-regulated (miR-30d-5p and miR-142-5p). Compared with the differentially expression of platelet miRNAs between 1-1 000 TPM in the C_3 and C_1 group, there were 133 differentially expressed miRNAs, in which 99 were up-regulated and 34 were down-regulated. While in the C_5 and C_1 group, there were 77 differentially expressed miRNAs, in which 31 were up-regulated and 46 were down-regulated. The six selected differentially expressed miRNAs verified by RT-qPCR were consistent with those of sequencing.@*CONCLUSION@#The expression profiles of platelets miRNAs change significantly among 1, 3, and 5 d of storage in vitro.
Subject(s)
Blood Component Removal , Blood Platelets , Cluster Analysis , Gene Expression Profiling , Humans , MicroRNAs/geneticsABSTRACT
In recent years, the MYB-related gene family has been found pivotal in plant growth and development. MYB-related gene family in Angelica dahurica var. formosana was systematically investigated based on "Chuanzhi No. 2" through transcriptome database search and bioinformatics and the temporal and spatial expression patterns were analyzed through real-time fluorescence-based quantitative polymerase chain reaction(PCR). The results showed that 122 MYB-related proteins family were identified, mainly including the unstable hydrophilic proteins with good thermal stability. Most of the proteins were located in nuclei. The majority of the proteins had the structures of random coil and α-helix. Five MYB-related proteins family of A. dahurica var. formosana had membrane-binding domains. The conserved domain analysis of MYB-related proteins family of A. dahurica var. formosana showed that the MYB domains of genes in five subgroups, similar to 2 R-, 3 R-, and 4 R-MYB proteins, contained three evenly distributed Trp(W) residues in the MYB repeat sequence. The phylogenetic analysis of MYB-related proteins family in A. dahurica var. formosana and Arabidopsis thaliana showed that the MYB-related members were unevenly distributed in five subgroups, and A. thaliana and A. dahurica var. formosana had almost the same number of genes in the CCA1-like subgroup. There were differences in the number, type, and distribution of motifs contained in 122 encoded proteins. Transcription factors with similar branches had similar domains and motifs. The expression pattern analysis showed that the transcription factors AdMYB53, AdMYB83, and AdMYB89 responded to hormones to varying degrees, and they were highly expressed in leaves and responded quickly in roots. This study lays a foundation for further investigating the function of MYB-related transcription factors of A. dahurica var. formosana and solving the corresponding biological problems such as bolting early.
Subject(s)
Angelica/chemistry , Animals , Computational Biology , Gastropoda , Phylogeny , Plant Leaves , Plant Proteins/genetics , Transcription Factors/geneticsABSTRACT
In order to explore the functions of genes of key rate-limiting enzymes chalcone isomerase(CHI) and chalcone synthase(CHS) in the biosynthesis of flavonoids in Lonicera macranthoides, this study screened and cloned the cDNA sequences of CHI and CHS genes from the transcriptome data of conventional variety and 'Xianglei' of L. macranthoides. Online bioinformatics analysis software was used to analyze the characteristics of the encoded proteins, and quantitative reverse-transcription polymerase chain reaction(qRT-PCR) to detect the expression of CHI and CHS in different parts of the varieties at different flowering stages. The content of luteo-loside was determined by high performance liquid chromatography(HPLC) and the correlation with the expression of the two genes was analyzed. The results showed that the CHI and CHS of the two varieties contained a 627 bp and 1170 bp open reading frame(ORF), respectively, and the CHI protein and CHS protein were stable, hydrophilic, and non-secretory. qRT-PCR results demonstrated that CHI and CHS of the two varieties were differentially expressed in stems and leaves at different flowering stages, particularly the key stages. Based on HPLC data, luteoloside content was in negative correlation with the relative expression of the genes. Thus, CHI and CHS might regulate the accumulation of flavonoids in L. macranthoides, and the specific functions should be further studied. This study cloned CHI and CHS in L. macranthoides and analyzed their expression for the first time, which laid a basis for investigating the molecular mechanism of the differences in flavonoids such as luteoloside in L. macranthoides and variety breeding.
Subject(s)
Acyltransferases/metabolism , Chalcone , Cloning, Molecular , Intramolecular Lyases , Lonicera/metabolism , Plant BreedingABSTRACT
Objective To investigate the expression and the potential roles of long non-coding RNA(lncRNA)cancer susceptibility candidate 2(CASC2)and imprinted gene H19 in extrahepatic cholangiocarcinoma(ECC). Methods Four samples from patients with ECC were collected for high-throughput sequencing which was conducted to reveal the transcriptomic profiles of lncRNA CASC2 and H19.Bioinformatics tools were employed to predict the potential roles of the two genes.Another 22 ECC tissue samples and the cholangiocarcinoma cell lines(RBE,QBC939,HuH-28,and HuCCT1)with different degrees of differentiation were selected for validation.The para-carcinoma tissue and normal human intrahepatic biliary epithelial cell(HIBEC)were used as the control groups.The expression levels of lncRNA CASC2 and H19 in carcinoma tissue,para-carcinoma tissue,and cell lines were determined by real-time quantitative polymerase chain reaction(qRT-PCR).The correlation analysis was carried out for the clinical indicators of patients with the expression levels of the target genes. Results The two target genes showed significantly different expression between carcinoma tissue and para-carcinoma tissue(all P<0.05).Specifically,CASC2 had higher expression level in the carcinoma tissue than in the para-carcinoma tissue(t=1.262,P=0.025),whereas the expression of H19 showed an opposite trend(t=1.285,P=0.005).The expression levels of CASC2 in QBC939(t=8.114,P=0.015)and HuH-28(t=9.202,P=0.012)cells were significantly higher than that in the control group.The expression levels of H19 were significantly lower in RBE(t=-10.244,P<0.001),QBC939(t=-10.476,P<0.001),HuH-28(t=-19.798,P<0.001),and HuCCT1(t=-16.193,P=0.004)cells than in the control group.Bioinformatics analysis showed that CASC2 was mainly involved in the metabolic process and H19 in the development of multicellular organisms.Both CASC2 and H19 were related to catalytic activity.The expression level of lncRNA CASC2 was correlated with pathological differentiation(χ 2=6.222,P=0.022)and lymph node metastasis(χ2=5.455,P=0.020),and that of lncRNA H19 with pathological differentiation(χ2=1.174,P=0.029)and tumor size(χ2=-0.507,P=0.037). Conclusions In the case of ECC,lncRNA CASC2 and H19 have transcription disorders.lncRNA CASC2 is generally up-regulated in the carcinoma tissue,while H19 is down-regulated.Both genes have the potential to become new molecular markers for ECC.
Subject(s)
Bile Duct Neoplasms/genetics , Bile Ducts, Intrahepatic/metabolism , Cholangiocarcinoma/genetics , Gene Expression Regulation, Neoplastic , Humans , RNA, Long Noncoding/genetics , Tumor Suppressor Proteins/geneticsABSTRACT
The responsive patterns of phytochrome gene family members to photoperiod and abiotic stresses were comparatively analyzed and the favorable natural variation sites of these genes were identified. This would help understand the mechanism of phytochrome gene family in photoperiod-regulated growth and development and abiotic stress response. In addition, it may facilitate the molecular marker assisted selection of key traits in foxtail millet. In this study, we used RT-PCR to clone three phytochrome genes SiPHYA, SiPHYB and SiPHYC from ultra-late maturity millet landrace variety 'Maosu'. After primary bioinformatics analysis, we studied the photoperiod control mode and the characteristics of these genes in responding to five abiotic stresses including polyethylene glycol (PEG)-simulated drought, natural drought, abscisic acid (ABA), high temperature and NaCl by fluorescence quantitative PCR. Finally, we detected the mutation sites of the three genes among 160 foxtail millet materials and performed haplotype analysis to determine the genes' functional effect. We found that the cloned cDNA sequences of gene SiPHYA, SiPHYB and SiPHYC were 3 981, 3 953 and 3 764 bp respectively, which contained complete coding regions. Gene SiPHYB and SiPHYC showed closer evolutionary relationship. Photoperiod regulated all of the three genes, but showed more profound effects on diurnal expression pattern of SiPHYB, SiPHYC than that of SiPHYA. Under short-day, when near heading, the expression levels of SiPHYA and SiPHYB were significantly lower than that under long-day, indicating their roles in suppressing heading of foxtail millet under long-day. SiPHYB and SiPHYC were responsive to PEG-simulated drought, natural drought, ABA and high temperature stresses together. SiPHYA and SiPHYB responded differently to salt stress, whereas SiPHYC did not respond to salt stress. Re-sequencing of 160 foxtail millet materials revealed that SiPHYB was highly conservative. Two missense mutations of SiPHYA, such as single nucleotide polymorphism (SNP) 7 034 522C→T and SNP7 036 657G→C, led to delaying heading and increasing plant height. One missense mutation of SiPHYC, such as SNP5 414 823G→T, led to shortening heading under short-day and delaying heading under long-day, as well as increasing plant height and panicle length regardless of photo-thermal conditions. Photoperiod showed different regulatory effects on SiPHYA, SiPHYB and SiPHYC. SiPHYB and SiPHYC jointly responded to various abiotic stresses except for the salt stress. Compared with the reference genotype, mutation genotypes of SiPHYA and SiPHYC delayed heading and increased plant height and panicle length.
Subject(s)
Gene Expression Regulation, Plant , Photoperiod , Phytochrome/metabolism , Plant Proteins/metabolism , Setaria Plant/metabolism , Stress, Physiological/geneticsABSTRACT
Heat stress transcription factors (Hsf) family is one of the most important transcription factor families in plants, and plays an important role in the growth and development of plants when encountering abiotic stresses such as heat, drought, and heavy metals. In this study, 20 SpbHsf genes were identified from the full-length transcriptome database of Setcreasea purpurea, and the structure and function of the Hsf gene family were analyzed using bioinformatics tools and qRT-PCR. The results showed that all SpbHsf proteins were hydrophilic. There were 12 SpbHsf proteins located in the nucleus, and the content of α-helix and random coil in the secondary structure of all SpbHsf proteins was high. The SpbHsf genes are divided into three subfamilies, each of which contains unique conserved motifs. All SpbHsf proteins contain DBD and HR-A/B domains. Phylogenetic analysis showed that OsHsf in Oryza sativa protein had the highest homology with SpbHsf protein. All the 20 SpbHsf genes were expressed in the root tissues of S. purpurea. Among them, 8 were significantly up-regulated while 8 were significantly down-regulated under Cu2+ stress. This study may help better understand the function and expression pattern of the S. purpurea Hsf gene family.
Subject(s)
Droughts , Gene Expression Regulation, Plant , Heat Shock Transcription Factors/metabolism , Humans , Phylogeny , Plant Proteins/metabolismABSTRACT
BACKGROUND: Jasmonic acid (JA) is a signal transducer molecule that plays an important role in plant development and stress response; it can also efficiently stimulate secondary metabolism in plant cells. RESULTS: RNA-Seq technology was applied to identify differentially expressed genes and study the time course of gene expression in Rhazya stricta in response to JA. Of more than 288 million total reads, approximately 27% were mapped to genes in the reference genome. Genes involved during the secondary metabolite pathways were up- or downregulated when treated with JA in R. stricta. Functional annotation and pathway analysis of all up- and downregulated genes identified many biological processes and molecular functions. Jasmonic acid biosynthetic, cell wall organization, and chlorophyll metabolic processes were upregulated at days 2, 6, and 12, respectively. Similarly, the molecular functions of calcium-transporting ATPase activity, ADP binding, and protein kinase activity were also upregulated at days 2, 6, and 12, respectively. Time-dependent transcriptional gene expression analysis showed that JA can induce signaling in the phenylpropanoid and aromatic acid pathways. These pathways are responsible for the production of secondary metabolites, which are essential for the development and environmental defense mechanism of R. stricta during stress conditions. CONCLUSIONS: Our results suggested that genes involved in flavonoid biosynthesis and aromatic acid synthesis pathways were upregulated during JA stress. However, monoterpenoid indole alkaloid (MIA) was unaffected by JA treatment. Hence, we can postulate that JA plays an important role in R. stricta during plant development and environmental stress conditions.
Subject(s)
Cyclopentanes/metabolism , Apocynaceae/genetics , Oxylipins/metabolism , Plant Growth Regulators/metabolism , Stress, Physiological , Flavonoids/biosynthesis , Base Sequence , Gene Expression , Environment , TranscriptomeABSTRACT
Chalcone isomerases (CHIs) play an essential role in the biosynthesis of flavonoids important in plant self-defense. Based on the transcriptome data of Aquilaria sinensis Calli, a full-length cDNA sequence of CHI1 (termed as AsCHI1) was cloned by reverse transcription PCR. AsCHI1 contains a complete open frame (ORF) of 654 bp. The deduced protein is composed of 217 amino acids, with a predicted molecular weight of 23.11 kDa. The sequence alignment and phylogenetic analysis revealed that AsCHI1 has conserved most of the active site residues in type I CHIs, indicating a close relationship with the CHI from Gossypium hirsutum. The recombinant AsCHI1 protein was obtained by heterologous expression of AsCHI1 in E. coli BL21(DE3). The purified AsCHI1 protein exhibited CHI activity by catalyzing the production of naringenin from naringenin chalcone. Remarkably, AsCHI1 expression in A. sinensis Calli treated with various abiotic stresses including salt, mannitol, cold, and heavy metals could be markedly increased, and plant hormones such as abscisic acid (ABA), gibberellin (GA3), and salicylic acid (SA) could also increase the expression of AsCHI1, suggesting that AsCHI1 might play an important role in plant self-defense. The results expand our understanding of the biosynthesis of flavonoids in A. sinensis and give further insight into the defensive responses of A. sinensis to abiotic and biotic stresses.
ABSTRACT
italic>NAC transcription factor genes play an important role in regulating plant adversity stress tolerance and secondary metabolism. To explore DaNAC transcription factor participation in the synthesis of asperosaponin Ⅵ in Dipsacus asper, we analyzed the expression of DaNAC genes based on full-length transcriptome data from different tissues (root, stem, leaf, flower, seed) to provide a theoretical foundation for regulating the metabolism of D. asper. RNA-seq data was used to identify open reading frames. Bioinformatic methods were used to identify the conserved domain motifs and construct an evolutionary tree. qRT-PCR was carried out to analyze tissue-specific and adversity-stressed expression. Twenty-nine DaNAC sequences were identified, all of which contain the conserved NAM domain and conserved motif 1 and motif 2 at the N terminal. Five DaNAC genes are closely related to the NAC genes in Arabidopsis thaliana and rice that are involved in adversity stress and are clustered in the Group Ⅰ subfamily. qRT-PCR revealed that DaNAC genes are differentially expressed between tissues. The expression levels were highest in leaves, followed by roots, stems and petioles, and the lowest in flowers and seeds. Compared with normal growth conditions, the expression of four NAC genes was up-regulated by treatment with low temperature (15 ℃). The expression of three genes (34564NAC2, 33883NAC48, 6727NAC14) was up-regulated and one gene (34480NAC22) was down-regulated by 150 μmol·L-1 MeJA. The results illustrate that the expression of NAC genes is induced by adversity stress, which provides a foundation for further study on the role of NAC family members in adversity stress in D. asper.
ABSTRACT
Objective:To identify the TIFY gene family in <italic>Eucommia ulmoides</italic> and analyze its expression from the whole genome level to lay the foundation for further study on <italic>EuTIFYs</italic> gene function. Method:Based on the <italic>E. ulmoides</italic> genome database,the TIFY gene family was identified through bioinformatics analysis tools such as National Center for Biotechnology Information(NCBI),MEME,PlantCare,Expert Protein Analysis System(ExPASy),and TBtools. Physicochemical properties,phylogenetic evolution,gene structure,<italic>cis</italic>-acting elements of the promoters and their expression patterns in leaf development and gum formation of the gene family were systematically analyzed. Result:In this study,fourteen <italic>EuTIFY</italic> genes (<italic>EuTIFY1</italic>-<italic>EuTIFY14</italic>) were identified in the <italic>E. ulmoides</italic> genome. The <italic>EuTIFYs</italic> were composed of 312-1 074 bp nucleotides encoding 102-357 amino acid residues,with isoelectric points of 4.99-10.06 and molecular weight in the range of 10.8-39.14 kDa. According to putative subcellular localization,proteins,which were mainly hydrophilic proteins,localized in the nucleus. The 14 <italic>EuTIFYs</italic> were unevenly distributed on 13 chromosomes. <italic>EuTIFY</italic> gene family was divided into four subfamilies: <italic>TIFY</italic>,<italic>JAZ</italic>,<italic>ZML</italic>,and <italic>PPD</italic>,which contained three,four,five,and two members respectively. The promoters of <italic>EuTIFYs</italic> contained multiple photoperiodic and abiotic stress-responsive cis-acting elements,which were involved in plant growth and abiotic stress regulation. Expression pattern analysis showed that <italic>EuTIFYs </italic>exhibited different expression levels in different development stages of <italic>E. ulmoides</italic> leaves and multiple interactions,and most of the genes were highly expressed in the early stage of leaf development and positively regulated the formation of <italic>E. ulmoides</italic> gum. Conclusion:Fourteen <italic>EuTIFYs</italic> were identified from the whole genome of <italic>E. ulmoides</italic>,and their structural characteristics and expression patterns were analyzed by bioinformatics. The findings of this study are expected to provide references for further research on the function of <italic>EuTIFYs</italic>.
ABSTRACT
NRT1 family proteins play an important roles for absorbing and transporting of nitrate in different plants. In order to identify the NRT1 family genes of Rehmannia glutinosa, this study used 11 NRT1 homologous proteins of Arabidopsis as probe sequences and aligned with the transcriptome data of R. glutinosa by using NCBI BLASTN software. Resulting there were 18 NRT1 proteins were identified in R. glutinosa. On basis of this, a series of the molecular characteristics of R. glutinosa NRT1 proteins including the conserved domains, the transmembrane structure, the subcellular location and phylogenetic features were in detail analyzed. At same time, it were systematically analyzed that the temporal and spatial expression patterns and characteristics of R. glutinosa NRT1 family genes in response to different stress factors. The results indicated that 18 R. glutinosa NRT1 family genes with the length of coding region from 1 260 bp to 1 806 bp, encoded proteins ranging from 419 to 601 amino acids, and all of they owned the domains of typical peptide transporter with 7 to 12 transmembrane domains. These R. glutinosa NRT1 family proteins mostly were found to locate on cellular plasma membrane, and belonged to the hydrophobic proteins. Furthermore, the evolutionary analysis found that the 18 R. glutinosa NRT1 protein family could be divided into two subfamilies, of which 14 NRT1 family genes might occur the positive selection, and 4 genes occur the passivation selection during the evolution process of R. glutinosa. In addition the expression analysis showed that 18 R. glutinosa NRT1 family genes have the distinct expression patterns in different tissues of R. glutinosa, and their expression levels were also obvious difference in response to various stress. These findings infield that 18 R. glutinosa NRT1 family proteins might have obviously different functional roles in nitrate transport of R. glutinosa. In conclusion, this study lays a solid theoretical foundation for clarifying the absorption and transport molecular mechanism of N element during R. glutinosa growth and development, and at same time for deeply studying the molecular function of R. glutinosa NRT1 proteins in absorption and transport of nitrate.
Subject(s)
Anion Transport Proteins , Membrane Transport Proteins , Nitrates , Phylogeny , Plant Proteins/metabolism , Rehmannia/genetics , TranscriptomeABSTRACT
OBJECTIVE@#To study the changes in mRNA and long non-coding RNA (lncRNA) expression profiles in a mouse model of bleomycin-induced lung fibrosis and identify lung fibrosis-related mRNA for coding-noncoding coexpression (CNC) bioinformatics analysis of the differential lncRNAs.@*METHODS@#Lung fibrosis was induced by intratracheal injection of bleomycin in 10 C57BL/6 mice and another 10 mice with intratracheal injection of saline served as the control group. Lung tissues were harvested from the mice at 14 days after the injections and lung fibrosis was assessed using Masson and HE staining. LncRNA chip technology was used to screen the differentially expressed mRNAs and lncRNAs in mice with lung fibrosis, and GO and KEGG pathway analyses of the differential mRNAs were performed using NCBI database and UCSC database to identify possible fibrosis-related mRNAs, which were validated by qRT-PCR to construct a coding and non-coding co- expression network with the differential lncRNAs.@*RESULTS@#Compared with the control mice, the mice with intratracheal injection of bleomycin showed obvious lung fibrosis. The results of gene chip analysis showed that 127 mRNAs were upregulated and 184 mRNAs were down-regulated in the model group as compared with the control group. GO and pathway analysis suggested that the differentially expressed genes participated mainly in immune response, cell differentiation, and cytoskeletons; the involved signal pathways were associated mainly with cytokine and cytokine receptor interaction and chemokine signal transduction. Bioinformatics analysis identified a significant coexpression network between the fibrosisrelated mRNA and the differentially expressed lncRNA.@*CONCLUSIONS@#In mice with lung fibrosis, the differential expressions of fibrosis-related mRNAs in the lung tissues are closely correlated with the co- expressions of a large number of differential lncRNAs, which points to a new direction for investigation of the pathogenesis of pulmonary fibrosis.
Subject(s)
Animals , Bleomycin/toxicity , Gene Expression Profiling , Gene Regulatory Networks , Mice , Mice, Inbred C57BL , Pulmonary Fibrosis/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/geneticsABSTRACT
In this study, the gene encoding the key enzyme 3-ketoacyl-CoA thiolase(KAT) in the fatty acid β-oxidation pathway of Atractylodes lancea was cloned. Meanwhile, bioinformatics analysis, prokaryotic expression and gene expression analysis were carried out, which laid a foundation for the study of fatty acid β-oxidation mechanism of A. lancea. The full-length sequence of the gene was cloned by RT-PCR with the specific primers designed according to the sequence information of KAT gene in the transcriptomic data of A. lancea and designated as AIKAT(GenBank accession number MW665111). The results showed that the open reading frame(ORF) of AIKAT was 1 323 bp, encoding 440 amino acid. The deduced protein had a theoretical molecular weight of 46 344.36 and an isoelectric point of 8.92. AIKAT was predicted to be a stable alkaline protein without transmembrane segment. The secondary structure of AIKAT was predicted to be mainly composed of α-helix. The tertiary structure of AIKAT protein was predicted by homology modeling method. Homologous alignment revealed that AIKAT shared high sequence identity with the KAT proteins(AaKAT2, CcKAT2, RgKAT and AtKAT, respectively) of Artemisia annua, Cynara cardunculus var. scolymus, Rehmannia glutinosa and Arabidopsis thaliana. The phylogenetic analysis showed that AIKAT clustered with CcKAT2, confirming the homology of 3-ketoacyl-CoA thiolase genes in Compositae. The prokaryotic expression vector pET-32 a-AIKAT was constructed and transformed into Escherichia coli BL21(DE3) for protein expression. The target protein was successfully expressed as a soluble protein of about 64 kDa. A real-time quantitative PCR analysis was performed to profile the AIKAT expression in different tissues of A. lancea. The results demonstrated that the expression level of AIKAT was the highest in rhizome, followed by that in leaves and stems. In this study, the full-length cDNA of AIKAT was cloned and expressed in E. coli BL21(DE3), and qRT-PCR showed the differential expression of this gene in different tissues, which laid a foundation for further research on the molecular mechanism of fatty acid β-oxidation in A. lancea.