ABSTRACT
BACKGROUND:Abnormal extracellular matrix accumulation and excessive proliferation of fibroblasts are the main manifestations of pathological scars.Excessive proliferation of fibroblasts leads to the production of large amounts of collagen-based extracellular matrix.Therefore,to investigate the role of fibroblast fibrosis in the formation of pathological scar will provide a new idea for revealing the mechanism of pathological scar and biological therapy. OBJECTIVE:To investigate the effect of RAS-selective lethal small molecule 3(RSL3)on the fibrosis of human pathological scar fibroblasts. METHODS:Then cases of pathological scar tissue and normal skin tissue samples from the same individuals,provided by the Department of Burn Plastic Surgery,General Hospital of Ningxia Medical University,were collected.Fibroblasts of human pathological scar and human normal skin were extracted and used in the following experiments.The general condition of the pathological scar tissue and the normal skin tissue was detected by hematoxylin-eosin staining.The appearance of fibroblasts from pathological scar and normal skin were observed by inverted microscope.The fibroblasts were verified by immunofluorescence assay.The cells were treated with different concentrations of RSL3(1,3,5,7,9,11,13 μmol/L).The inhibitory concentration of RSL3 on fibroblasts was detected by cell counting kit-8.Control group(without treatment)and RSL3 intervention group(treated with 7 μmol/L RSL3 for 24 hours)were set up.The mRNA and protein expressions of glutathione peroxidase 4,type Ⅰ collagen,type Ⅲ collagen and α-smooth muscle actin were detected by Qrt-PCR and western blot,respectively.Level of malondialdehyde in cells was detected.The residual scratch area was measured by cell scratch test after 24 hours to calculate the percentage of residual scratch area. RESULTS AND CONCLUSION:The expression of glutathione peroxidase 4 in the pathological scar group was higher than that in the normal skin group(Mrna:t=3.252,P<0.01;protein:t=5.075,P<0.01).The expression of glutathione peroxidase 4 in the pathological scar fibroblast group was higher than that in the normal skin fibroblast group(Mrna:t=10.32,P<0.01;protein:t=26.22,P<0.01).Compared with the control group,the expression of glutathione peroxidase 4 was decreased(Mrna:t=2.798,P<0.05;protein:t=4.643,P<0.01),the content of malondialdehyde was increased(t=2.917,P<0.05),the expression of type Ⅰ collagen(Mrna:t=15.84,P<0.01;protein:t=4.610,P<0.01),type Ⅲ collagen(Mrna:t=28.86,P<0.01;protein:t=7.713,P<0.01)and α-smooth muscle actin(Mrna:t=2.671,P<0.05;protein:t=7.417,P<0.01)were decreased in the RSL3 intervention group.Compared with the control group,the migration ability was weakened in the RSL3 intervention group(t=14.06,P<0.01).To conclude,RSL3 can inhibit the expression of glutathione peroxidase 4 and then inhibit the ability of fibrosis and migration of pathological scar fibroblasts.
ABSTRACT
BACKGROUND:With the aging of the global population,the incidence rate of osteoporosis is also increasing.It is very important to further understand its pathogenesis and propose new therapeutic targets.Recent studies have shown that ferroptosis is closely related to the pathogenesis of some bone diseases,such as inflammatory arthritis,osteoporosis and osteoarthritis. OBJECTIVE:To summarize the previous studies on the mechanism of ferroptosis in osteoporosis,so as to provide new therapeutic ideas and potential therapeutic targets for osteoporosis. METHODS:The first author used the computer to search the documents published from 2000 to 2022 in CNKI,WanFang,VIP,PubMed and Web of Science with the key words of"ferroptosis,osteoporosis,osteoblasts,osteoclasts,iron chelators,reactive oxygen species,nuclear factor erythroid 2-related factor 2,heme oxygenase-1,glutathione peroxidase 4,review"in Chinese and English.A total of 70 articles were finally included according to the inclusion criteria. RESULTS AND CONCLUSION:Ferroptosis is significantly different from necrosis,apoptosis and autophagy.In terms of cell morphology and function,it does not have the morphological characteristics of typical necrosis,nor does it have the characteristics of traditional apoptosis,such as cell contraction,chromatin condensation,the formation of apoptotic bodies and the disintegration of cytoskeleton.Contrary to autophagy,ferroptosis does not form a classical closed bilayer membrane structure(autophagic vacuole).Morphologically,ferroptosis is mainly manifested by obvious contraction of mitochondria,increased membrane density,and reduction or disappearance of mitochondrial cristae,which are different from other cell death modes.Iron overload can destroy bone homeostasis by significantly inhibiting osteogenic differentiation and stimulating osteoclast formation,leading to osteoporosis.Iron overload interferes with the differentiation of stem cells to osteoblasts,leading to a weakened osteoblast function and further imbalance of bone metabolism in the body,which eventually leads to osteoporosis.Stimulated by iron overload,osteoclast bone resorption is enhanced and bone loss exceeds new bone formation.Iron chelators have been proved to have osteoprotective effects by inhibiting osteoclast activity and stimulating osteogenic differentiation of osteoblasts.Its potential mechanism is related to inhibiting osteoclast differentiation and promoting osteoblast differentiation.Antioxidants can prevent reactive oxygen species production and inhibit bone absorption,thus improving bone metabolism and effectively preventing osteoporosis.
ABSTRACT
BACKGROUND:It is of great significance to find new diagnostic markers of the disease and molecular targets for the treatment of the disease and the alleviation of organ injury.Ferroptosis is a newly discovered form of cell death.Overactivation of ferroptosis in animal models of sepsis is associated with the activation of inflammatory response and the injury of the liver,heart,kidney and other important organs,but the relationship between ferroptosis and bloodstream infection is not very clear. OBJECTIVE:To study the changes and biological significance of ferroptosis in a mouse model of blood stream infection induced by different bacteria. METHODS:Blood stream infection models induced by gram negative bacteria Escherichia coli,Klebsiella pneumoniae and gram positive bacteria Staphylococcus aureus and Enterococcus faecalis were established in SPF-grade ICR male mice,with 42 mice in each group.The mRNA expression levels of ferroptosis marker genes transferrin receptor 1 and glutathione peroxidase 4 in the liver,myocardium and kidney were detected at 0.5,1,3,6,12,24 and 48 hours after modeling.Another 18 SPF-grade ICR male mice were selected and randomly divided into dimethyl sulfoxide(DMSO)control group,DMSO+Klebsiella pneumoniae group,and Ferrostatin-1+Klebsiella pneumoniae group,with 6 mice in each group.In the latter two groups,animal models of Klebsiella pneumoniae bloodstream infection were established by tail vein injection of Klebsiella pneumoniae suspension,and 5 mg/kg Ferrostatin-1 and an equal dose of DMSO were given intraperitoneally 1 hour prior to the modeling of bloodstream infection,respectively.Serum levels of alanine aminotransferase,aspartate aminotransferase,blood creatinine,blood urea nitrogen,phosphocreatine kinase isoenzyme,lactate dehydrogenase,and mRNA expression levels of ferroptosis marker genes in various tissues were assayed at 6 hours after modeling. RESULTS AND CONCLUSION:After bloodstream infection modeling,the mRNA expression levels of transferrin receptor 1 in the liver,myocardium and kidney of bloodstream infection mice with different bacteria increased first and then decreased;and the mRNA expression level of glutathione peroxidase 4 decreased first,then increased,and reached the peak at 6 hours after modeling.The changes in transferrin receptor 1 and glutathione peroxidase 4 mRNA levels in bloodstream infection mice induced by gram-negative bacteria were more significant than those in blood stream infection mice induced by gram-positive bacteria,especially in bloodstream infection mice induced by Klebsiella pneumoniae.At 6 hours after bloodstream infection induced by Klebsiella pneumoniae,the levels of alanine aminotransferase,aspartate aminotransferase,serum creatinine,blood urea nitrogen,creatine phosphate kinase isoenzyme,lactate dehydrogenase in mice were significantly increased.Before modeling,Ferrostatin-1 intervention significantly reduced the levels of alanine aminotransferase,aspartate aminotransferase,serum creatinine,blood urea nitrogen,creatine phosphate kinase isoenzyme,and lactate dehydrogenase.All these findings indicate that the activation of ferroptosis in bloodstream infection mice induced by different bacteria is obvious,and the activation of ferroptosis in bloodstream infection mice induced by gram-negative bacteria is more obvious.Inhibition of iron death significantly attenuates liver,myocardial,and kidney injury in the mouse model of bloodstream infection induced by Klebsiella pneumoniae.
ABSTRACT
Objective @#To evaluate the effect of melatonin on nocturnal exacerbation of neuropathic pain and to ex plore its mechanism through the specific silencing information regulator 1 ( SIRT1)-brain and muscle ARNT-like protein 1 ( BMAL1 ) pathway .@*Methods @# 96 SPF grade male C57/B6 mice were randomly divided into three groups : the sham operation (S) group , the neuropathic pain model (NP) group and the NP model + melatonin treatment (10 mg/kg) ( NP + M) group; preoperative experimental mice were placed in the environment of the specified light pattern; the environment of alternating 12 h light and 12 h darkness was used for at least two weeks , and natural time was converted into the time of the award (ZT) , and the starting point of the light was ZT0; only the sciatic nerve was isolated in the S group , and the mouse NP model was prepared using chronic constriction injury (CCI) of the sciatic nerve in the NP group and the NP + M group , and the NP + M group was inj ected with me latonin after the operation; the expression levels of SIRT1, BMAL1, and glutathione peroxidase 1 (Gpx1) were de tected in the spinal cord at each time point at 14 d postoperatively by Western blot. Postoperative co-staining of SIRT1 in the dorsal horn of the spinal cord with the spinal cord neuronal marker neuron specific nuclear protein (NeuN) , the microglial cell activation marker ion calcium binding adapter molecule 1 (iba-1) , and the astrocyte marker glial fibrillary acidic protein ( GFAP) was carried out by immunofluorescence and iba-1 was detected at each time point to determine the activation status of microglia.@*Results @#SIRT1 , BMAL1 and Gpx1 decreased in NP group mice at 14 d ZT22 postoperatively compared to ZT10 time point in NP group ( P < 0.05) ; SIRT1 and BMAL1 were elevated in NP + M group at ZT14 time point compared to ZT14 time point in NP group (P < 0.05) , whereas Gpx1 was elevated at ZT18 time point (P < 0.05) . SIRT1 was co expressed in the dorsal horn of the spinal cord and in microglia. C ompared with ZT10 time point , microglia expression decreased in NP group mice at ZT22 time point 14 d after surgery (P < 0.05) ; compared with ZT10 time point , there was no statistically significant difference in microglia expression in NP + M group mice at ZT22 time point 14 d after surgery .@*Conclusion@#Melatonin attenuates nocturnal exacerbation of neuropathic pain by a mechanism that may be related to activation of microglia SIRT1-BMAL1 pathway protein expression .
ABSTRACT
ObjectiveTo investigate the effect of Zuoguiwan on the ovarian function in the rat model of cyclophosphamide-induced premature ovarian failure (POF) based on the changes of ferroptosis pathway. MethodForty SD rats were randomized into blank, model, and low- and high-dose (2, 8 g·kg-1, respectively) Zuoguiwan groups, with 10 rats in each group. The rats in the other groups except the normal group were intraperitoneally injected with CTX at a dose of 50 mg·kg-1 on the first day and 8 mg·kg-1 from the second day to the fifteenth day for the modeling of POF. After modeling, the rats were administrated with corresponding drugs or normal saline by gavage for four weeks. Hematoxylin-eosin staining was performed to observe the pathological changes in the ovarian tissue. The mitochondria of the ovarian tissue was observed by electron microscopy. The serum levels of follicle-stimulating hormone (FSH), estradiol (E2), luteinizing hormone (LH), anti-Mullerian hormone (AMH), malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), and iron ion were measured by biochemical methods and enzyme-linked immunosorbent assay. Western blot was employed to determine the protein levels of glutathione peroxidase 4 (GPX4), solute carrier family 7 member 11 (SLC7A11), ferritin heavy chain (FTH1), and acyl-CoA synthetase long chain family member 4 (ACSL4). ResultCompared with the blank group, the model group showcased significantly increased atretic follicles, atrophied, fragmented, and vacuolated mitochondria, and reduced, loose, and disordered cristae in mitochondria. Compared with the model group, high-dose Zuoguiwan increased mature follicles, the volume of mitochondria in the ovary, alleviated the vacuolation, and improved the number and arrangement of mitochondrial cristae. Compared with the blank group, the modeling elevated the levels of iron, MDA, FSH, and LH, up-regulated the expression of GPX4, SLC7A11, and FTH1 (P<0.05, P<0.01), decreased the activities of SOD and CAT, lowered the levels of E2 and AMH, and down-regulated the expression of ACSL4 (P<0.05, P<0.01). Compared with the model group, drug interventions lowered the levels of iron, MDA, FSH, and LH, down-regulated the expression of GPX4, SLC7A11, and FTH1 (P<0.05, P<0.01), increased the activity of CAT, elevated the levels of E2 and AMH, and up-regulated the expression of ACSL4 (P<0.05, P<0.01). ConclusionZuoguiwan may inhibit the occurrence of ferroptosis by regulating the SLC7A11/GPX4 axis, thereby improving the ovarian function of POF rats.
ABSTRACT
ObjectiveTo investigate the role and mechanism of action of Yinchenhao Decoction in inhibiting ferroptosis of hepatocytes in mice with autoimmune hepatitis. MethodsA total of 18 specific pathogen-free female C57BL/6 mice were selected and divided into normal group, model group, and treatment group using a random number table, with 6 mice in each group. The mice in the model group and the treatment group were injected with concanavalin A (Con A) via the caudal vein to establish a mouse model of autoimmune hepatitis, and those in the normal group were injected with normal saline. The mice in the treatment group were given prophylactic treatment with Yinchenhao Decoction (4.68 g crude drug/kg) by gavage at 14 days before modeling, and Con A was injected after the last gavage. The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), interferon gamma (IFN-γ), tumor necrosis factor-α (TNF-α), iron ion, glutathione (GSH), reactive oxygen species (ROS), adenosine triphosphate (ATP), and malondialdehyde (MDA) were measured; liver index and spleen index were calculated; the expression levels of GPX4 and SLC7A11 were measured; liver histopathological changes were compared between groups. A one-way analysis of variance was used for comparison of normally distributed continuous data between three groups, and the least significant difference t-test was used for further comparison between two groups. ResultsCompared with the normal group, the model group had significant increases in liver index, spleen index, ALT, AST, IFN-γ, TNF-α, iron ion, ROS and MDA (all P<0.05) and significant reductions in the content of GSH and ATP and the protein expression levels of GPX4 and SLC7A11 (all P<0.05). Compared with the model group, the treatment group had significant reductions in liver index, spleen index, ALT, AST, IFN-γ, TNF-α, iron ion, ROS and MDA (all P<0.05) and significant increases in the content of GSH and ATP and the protein expression levels of GPX4 and SLC7A11 (all P<0.05). HE staining showed that compared with the normal group, the model group showed massive hepatocyte degeneration and necrosis and inflammatory cell aggregation at the portal area, and compared with the model group, the treatment group had alleviation of liver necrosis and inflammatory infiltration. ConclusionLiver injury induced by Con A may be associated with ferroptosis. Yinchenhao Decoction can increase the protein expression levels of SLC7A11 and GPX4 protein and thus inhibit ferroptosis of hepatocytes induced by Con A.
ABSTRACT
ObjectiveTo observe the effect of Banxia Xiexintang (BXT) on the proliferation of human gastric cancer HGC-27, MKN-45, and AGS cells and its mechanism. MethodCell counting kit-8 (CCK-8) was used to detect the effects of different concentrations of BXT-containing serum (5%, 10%, and 20%) on the proliferation of HGC-27, MKN-45, and AGS cells. A mitochondrial membrane potential probe (TMRE) was used to detect the expression of mitochondrial membrane potential in cells. A kit was used to detect iron ion (Fe2+) content, lipid peroxide (LPO), and superoxide dismutase (SOD) activity. Western blot was used to detect the protein expression levels of glycogen synthase3β (GSK3β), phosphorylated GSK3β (p-GSK3β), nuclear factor E2 related factor 2 (Nrf2), and glutathione peroxidase 4 (GPX4). The real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of member 11 of the cystine/glutamic acid reverse transporter solute vector family 7 (SLC7A11), member 2 of the heavy chain solute vector family 3 (SLC3A2), transferrin receptor 3 (TFRC), and tumor protein (TP)53. ResultCCK-8 results showed that BXT and capecitabine could significantly reduce the survival rate of three kinds of gastric cancer cells after treatment with drug-containing serum for 24 h (P<0.01). After 48 h of intervention with drug-containing serum, the survival rate of three kinds of gastric cancer cells was significantly decreased in both the capecitabine group and the BXT group compared with the blank group. The BXT group was dose-dependent, with 20% BXT having the most significant effect (P<0.01). In terms of biochemical indicators of ferroptosis, compared with the blank group, BXT and capecitabine significantly decreased the expression of mitochondrial membrane potential (P<0.01) and SOD activity (P<0.01) and significantly increased the contents of LPO and Fe2+ (P<0.01), so as to improve the sensitivity of gastric cancer cells to ferroptosis. In terms of the Nrf2/GPX4 pathway, compared with the blank group, the BXT group could reduce the protein expressions of p-GSK3β, Nrf2, and GPX4 (P<0.01) in gastric cancer cells and increase mRNA expressions of SLC7A11 and SLC3A2 (P<0.05). It could also increase the protein expression of GSK3β (P<0.01) and mRNA expression of TP53 and TFRC (P<0.05, P<0.01) in gastric cancer cells. Inhibition of the Nrf2/GPX4 pathway induces ferroptosis in gastric cancer cells. Compared with the capecitabine group, the 20% BXT group showed a more obvious effect. ConclusionBanxia Xiexintang can induce ferroptosis in gastric cancer cells HGC-27, MKN-45, and AGS by inhibiting the Nrf2/GPX4 pathway.
ABSTRACT
Objective To explore the effect of Shuanglu Tongnao Formula on neuronal ferroptosis in ischemic stroke rats and its regulatory mechanism on the silent information regulator 2 homolog 1(SIRT1)/nuclear factor erythroid 2-related fac-tor 2(Nrf2)/glutathione peroxidase 4(GPx4)signaling pathways.Methods Twenty rats were selected as sham operation group by the random number table method,and the remaining seventy rats were made ischemic stroke rat models by the middle cerebral artery occlusion method.The rats that had been successfully modeled were randomly divided into the model control group,Shuanglu Tongnao formula group,Shuanglu Tongnao formula+SIRT1 inhibitor group(Shuanglu Tongnao formula+EX527 group),with 20 rats in each group.After 14 days,the rats were scored for neurological injury;TTC staining was applied to detect the area of cerebral infarction in rats;HE staining was applied to detect pathological changes in rat brain tissue;Nissl staining was applied to detect the number of neurons in rat brain tissue;the kit was applied to detect the levels of ferri ion(Fe2+),superoxide dismutase(SOD),glutathione(GSH),and malonaldehyde(MDA)in rat brain tissue;immunohistochemistry was applied to de-tect the positive expression of acyl-CoA synthetase long-chain family member 4(ACSL4),transferrin receptor(TFR),and ferritin heavy polypeptide 1(FTH1)proteins in rat brain tissue;Western blotting method was applied to detect the expression of SIRT1,Nrf2,GPx4,and cystine/glutamate antiporter solute carrier family 7 member 11(SLC7A11)proteins in rat brain tissue.Results Compared with the sham operation group,the neurological deficit score,cerebral infarction area,the contents of Fe2+and MDA,and the protein expressions of ACSL4 and TFR in model control group were increased(P<0.05);the number of neurons,the con-tents of SOD and GSH,the protein expression of FTH1,SIRT1,Nrf2,GPx4,and SLC7A11 were all reduced(P<0.05).Compared with the model control group,the neurological deficit score,cerebral infarction area,the contents of Fe2+and MDA,and the protein expression of ACSL4 and TFR in the Shuanglu Tongnao formula group were reduced(P<0.05),and the number of neurons,the contents of SOD and GSH,the protein expressions of FTH1,SIRT1,Nrf2,GPx4,and SLC7A11 are all increased(P<0.05).The results of the SIRT1 inhibitor supplementation experiment showed that the SIRT1 inhibitor reversed the inhibitory effect of Shuan-glu Tongnao formula on neuronal ferroptosis,while also inhibited the expression of Nrf2 and GPx4(P<0.05).Conclusion The Shuanglu Tongnao formula may inhibit neuronal ferroptosis in ischemic stroke rats by activating the SIRT1/Nrf2/GPx4 signa-ling pathway.
ABSTRACT
ObjectiveTo investigate the effect and mechanism of Zhenwutang on renal oxidative damage in the mouse model of diabetic kidney disease with the syndrome of spleen-kidney Yang deficiency via the nuclear factor erythroid 2-related factor-2 (Nrf2)/heme oxygenase-1 (HO-1)/glutathione peroxidase 4 (GPX4) signaling pathway. MethodTwenty-five 7-week-old SPF-grade male db/m mice and 95 7-week-old SPF-grade male db/db mice were adaptively fed for a week. A blank group was set with the db/m mice without treatment, and the other mice were administrated with Rhei Radix et Rhizoma decoction and hydrocortisone for the modeling of diabetic kidney disease with the syndrome of spleen-kidney Yang deficiency. The modeled mice were randomized into the model, irbesartan (25 mg·kg-1), and high-, medium-, low-dose (33.8, 16.9, 8.45 g·kg-1) Zhenwutang groups (n=15) and administrated with corresponding drugs for 8 weeks. The survival status of mice was observed, and the traditional Chinese medicine (TCM) syndrome score was recorded. The indicators related to spleen-kidney Yang deficiency, fasting blood glucose (FBG), and renal function indicators were determined. Hematoxylin-eosin staining was employed to observe the histopathological changes of the renal tissue in each group. Biochemical kits were used to determine the oxidative stress-related indicators in the renal tissue. Real-time polymerase chain reaction and Western blotting were employed to determine the mRNA and protein levels, respectively, of Nrf2, HO-1, glutamate-cysteine ligase catalytic subunit (GCLC), and GPX4 in the renal tissue of mice in each group. ResultCompared with the blank group, the modeling increased the TCM syndrome score (P<0.05), elevated the estradiol (E2) and FBG levels (P<0.05), lowered the testosterone (T), triiodothyronine (T3), and tetraiodothyronine (T4) levels (P<0.05), and weakened the renal function (P<0.05). In addition, the modeling led to glomerular hypertrophy and glomerular mesangial and basal thickening, decreased the catalase (CAT) activity, total antioxidant capacity (T-AOC), and glutathione (GSH) content (P<0.05), increased the malondialdehyde (MDA) content (P<0.05), and down-regulated the mRNA and protein levels of Nrf2, HO-1, GCLC, and GPX4 in the renal tissue (P<0.05). Compared with the model group, high and medium doses of Zhenwutang decreased the TCM syndrome score and E2 content (P<0.05), increased the T, T3, and T4 content (P<0.05), improved the renal function (P<0.05), alleviated the pathological changes in the renal tissue, increased CAT, T-AOC, and GSH (P<0.05), reduced MDA (P<0.05), and up-regulated the mRNA and protein levels of Nrf2, HO-1, GCLC, and GPX4 in the renal tissue (P<0.05). ConclusionZhenwutang can improve the general state and renal function and reduce the oxidative damage and pathological changes in the renal tissue of db/db mice with spleen-kidney Yang deficiency by regulating the Nrf2/HO-1/GPX4 signaling pathway.
ABSTRACT
Background: Hypertension is consistently related to the development of ischemic heart disease, heart failure, stroke, and chronic kidney disease. Oxidative stress has been associated with mechanisms of hypertension which could be nullified by antioxidants such as Vitamin C and Vitamin E. Aim and Objectives: The objectives of the study are as follows: (i) To estimate the impact of antioxidant therapy on antioxidant capacity in hypertensive patients; (ii) to measure serum levels of glutathione, glutathione peroxidase (GPx), glutathione reductase (GR), and superoxide dismutase (SOD) in hypertensive patients before and after giving them antioxidant therapy for 45 days. Materials and Methods: Thirty randomly selected hypertensive patients were given Supradyn tablet once a day for 45 days. Ferric reducing ability of plasma (FRAP), SOD, GR, GPx, and reduced Glutathione assays were measured before and after the intervention therapy. Results: Total antioxidant capacity as measured by serum FRAP in hypertensive patients before and after the therapy was increased significantly from 578.8 ± 60.85 to 592.1 ± 59.66 (?mol/L), respectively. The levels of SOD, GPx, GR, and Glutathione in hypertensive patients before giving antioxidant therapy were 1.6 ± 0.49 U/ml, 184.6 ± 17.1 ?mol/L/min, 8.96 ± 1.15 ?mol/L/min, and 8.03 ± 0.96 ?mol/g of Hb, respectively. The same after giving them antioxidant therapy were 1.7 ± 0.46 U/ml, 182.4 ± 15.98 ?mol/L/min, 8.83 ± 1.11 ?mol/L/min, and 7.83 ± 0.94 ?mol/g of Hb, respectively. The levels of GPx, GR, and Glutathione were significantly decreased after giving antioxidant therapy for 45 days while SOD level did not change significantly. Conclusion: Antioxidant therapies for 45 days led to a significant increase in total antioxidant capacity as shown by plasma FRAP levels and a significant decrease in serum levels of enzymatic antioxidants such as GPx, GR and Glutathione in hypertensive patients. However, serum levels of SOD did not show a significant change.
ABSTRACT
Objective: The clinical trajectories of patients with psychotic disorders have divergent outcomes, which may result in part from glutathione (GSH)-related high-risk genotypes. We aimed to determine pharmacokinetics of clozapine, GSH levels, GSH peroxidase (GPx) activity, gene variants involved in the synthesis and metabolism of GSH, and their association with psychotic disorders in Mexican patients on clozapine monotherapy and controls. Methods: The sample included 75 patients with psychotic disorders on clozapine therapy and 40 paired healthy controls. Plasma clozapine/N-desmethylclozapine, GSH concentrations, and GPx activity were determined, along with genotyping of GCLC and GSTP1 variants and copy number variations of GSTP1, GSTT1, and GSTM1. Clinical, molecular and biochemical data were analyzed with a logistic regression model. Results: GSH levels were significantly reduced and, conversely, GPx activity was higher among patients than controls. GCLC_GAG-7/9 genotype (OR = 4.3, 95%CI = 1.40-14.31, p = 0.019) and hetero-/homozygous genotypes of GCLC_rs761142 (OR = 6.09, 95%CI = 1.93-22.59, p = 0.003) were found to be risk factors for psychosis. The genetic variants were not related to clozapine/N-desmethylclozapine levels or metabolic ratio. Conclusions: GCLC variants were associated with the oxidative stress profile of patients with psychotic disorders, raising opportunities for intervention to improve their antioxidant defenses. Further studies with larger samples should explore this proposal.
ABSTRACT
Ex vivo culture-amplified mesenchymal stem cells (MSCs) have been studied because of their capacity for healing tissue injury. MSC transplantation is a valid approach for promoting the repair of damaged tissues and replacement of lost cells or to safeguard surviving cells, but currently the efficiency of MSC transplantation is constrained by the extensive loss of MSCs during the short post-transplantation period. Hence, strategies to increase the efficacy of MSC treatment are urgently needed. Iron overload, reactive oxygen species deposition, and decreased antioxidant capacity suppress the proliferation and regeneration of MSCs, thereby hastening cell death. Notably, oxidative stress (OS) and deficient antioxidant defense induced by iron overload can result in ferroptosis. Ferroptosis may inhibit cell survival after MSC transplantation, thereby reducing clinical efficacy. In this review, we explore the role of ferroptosis in MSC performance. Given that little research has focused on ferroptosis in transplanted MSCs, further study is urgently needed to enhance the in vivo implantation, function, and duration of MSCs.
Subject(s)
Humans , Antioxidants/metabolism , Ferroptosis , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Iron Overload/metabolismABSTRACT
Ferroptosis is a newly-emerged pattern of programmed cell death discovered in recent years, which is defined as iron-dependent programmed necrosis mediated by lipid peroxidation damage. As a conservative procedure, ferroptosis plays a vital role in the development and diseases of multiple organisms including plants and animals. Since ferroptosis was first reported in 2012, growing interests have been diverted to the process of ferroptosis and its role in disease treatment. Ischemia-reperfusion injury is a common pathological process during organ transplantation, and ferroptosis is considered as one of the main patterns inducing ischemia-reperfusion injury. Consequently, the definition, regulatory mechanism and the mechanisms of ferroptosis in ischemia-reperfusion injury after kidney, liver, heart and lung transplantations were reviewed, aiming to provide theoretical basis for the prevention and treatment of ischemia-reperfusion injury in organ transplantation.
ABSTRACT
AIM: To investigate the occurrence and possible mechanism of blue light-induced ferroptosis in retinal pigment epithelial cells.METHODS: ARPE-19 cells cultured in vitro were irradiated by 405 nm blue light at 50 mW/cm2 irradiance with different duration and were divided into control, 16.3J/cm2, 32.6J/cm2, and 65.2J/cm2 groups; the 65.2J/cm2 group was defined as the high-level blue light irradiation group and cells were further divided into control, high-level blue light irradiation group and high-level blue light irradiation + ferroptosis inhibitor group. CCK-8 assay was used to detect cell viability, commercial kits were used to detect intracellular glutathione(GSH), ferrous iron and malondialdehyde(MDA)concentration, and Western blot was used to detect the relative expression of glutathione peroxidase 4(GPX4)and xCT proteins in cells.RESULTS: The decrease of ARPE-19 cell viability caused by blue light irradiation was dose-dependent, and the reduction of intracellular GSH concentration, the increase of ferrous iron concentration and MDA concentration were all caused by high-level blue light irradiation(all P&#x003C;0.05); the ferroptosis inhibitor partially restored cell viability and recovered intracellular GSH, reduced concentrations of MDA and ferrous iron in the blue light irradiation group(all P&#x003C;0.05). The relative expressions of GPX4 and xCT proteins were significantly decreased in the blue light irradiation group, and such change was alleviated by the ferroptosis inhibitor(P&#x003C;0.05).CONCLUSION: Blue light irradiation may induce ferroptosis in RPE cells by targeting the xCT and GPX4-associated antioxidant pathways.
ABSTRACT
Blueberries are rich in phenolic compounds including anthocyanins which are closely related to biological health functions. The purpose of this study was to investigate the antioxidant activity of blueberry anthocyanins extracted from 'Brightwell' rabbiteye blueberries in mice. After one week of adaptation, C57BL/6J healthy male mice were divided into different groups that were administered with 100, 400, or 800 mg/kg blueberry anthocyanin extract (BAE), and sacrificed at different time points (0.1, 0.5, 1, 2, 4, 8, or 12 h). The plasma, eyeball, intestine, liver, and adipose tissues were collected to compare their antioxidant activity, including total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity and glutathione-peroxidase (GSH-PX/GPX) content, and the oxidative stress marker malondialdehyde (MDA) level. The results showed that blueberry anthocyanins had positive concentration-dependent antioxidant activity in vivo. The greater the concentration of BAE, the higher the T-AOC value, but the lower the MDA level. The enzyme activity of SOD, the content of GSH-PX, and messenger RNA (mRNA) levels of Cu,Zn-SOD, Mn-SOD, and GPX all confirmed that BAE played an antioxidant role after digestion in mice by improving their antioxidant defense. The in vivo antioxidant activity of BAE indicated that blueberry anthocyanins could be developed into functional foods or nutraceuticals with the aim of preventing or treating oxidative stress-related diseases.
Subject(s)
Male , Mice , Animals , Antioxidants/pharmacology , Blueberry Plants , Anthocyanins/pharmacology , Mice, Inbred C57BL , Superoxide Dismutase , Plant Extracts/pharmacology , Superoxide Dismutase-1ABSTRACT
Objective:Based on the regulatory effect of curcumin (Cur) on inflammation and iron death, to explore the mechanism of Cur protecting against cerebral ischemia-reperfusion injury (CIRI).Methods:A rat model of middle cerebral artery occlusion (MCAO) was established by the modified suture-occluded method. The modeled SD rats were randomly divided into the Sham group, CIRI group and Cur group. The neurobehavioral score of rats was measured by the Longa method. Hematoxylin-eosin (HE) staining was used to observe the pathological changes in the brain tissue of rats in each group. Furthermore, the contents of glutathione (GSH), malondialdehyde (MDA) and Fe 2+, as well as the levels of the inflammatory factors tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 in the ischemic cerebral cortex, were detected by corresponding testing kits. Western blotting was applied to detect the expression of glutathione peroxidase 4 (GPX4), a key regulatory protein of ferroptosis in the cerebral cortex. In addition, neuronal apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay, and ultrastructural changes in neurons in the cerebral cortex were observed under a transmission electron microscope. Results:Compared with the CIRI group, the Cur group showed decreased neurobehavioral scores, significantly reduced contents of MDA, Fe 2+, TNF-α, IL-1β and IL-6 (all P<0.05), but obviously increased content of GSH and protein expression of GPX4 (both P<0.05). Further pathological examination revealed edema, rupture and necrosis of neurons in the CIRI group, while mild edema and a small number of necrotic cells were observed in the Cur group only. The results of TUNEL staining indicated that the rate of neuronal apoptosis in the Cur group was lower than that in the CIRI group, with a statistically significant difference between groups [(23.6±3.5)% vs. (36.8±4.2)%; P<0.05]. In addition, under the transmission electron microscope, the CIRI group had a reduced volume of mitochondria, thickened double-layer membrane structure, and decreased or disappeared mitochondrial cristae, while the Cur group showed partial margination of nuclear chromatin and alleviated damage to mitochondria. Conclusions:Cur could attenuate CIRI, and its neuroprotective mechanism may be related to the inhibition of the inflammatory response and GPX4-mediated ferroptosis.
ABSTRACT
Objective:To observe the effects of electroacupuncture on the expression of cortical solute carrier family 7 member 11(SLC7A11),glutathione(GSH)and glutathione peroxidase 4(GPX4)in rats with post stroke spasticity(PSS),and to explore the mechanism of electroacupuncture in the treatment ferrozosis in PSS.Methods:Thirty SD male rats were randomly divided into sham group,model group and electroacupuncture group.A modified Zea-Longa wire bolus+internal capsule injection NMDA method was used to produce a rat model of PSS.In the electroacupunc-ture group,the affected side of Yanglingquan and Quchi were needled once/day for 30 min/time for 7 d.In the sham group and the model group,only fixation without intervention was performed during the same period.Zea-Longa Neuro-logical Function Score was used to detect the neurological function of rats,electrophysiological tracing method was used to detect the muscle tone of rat quadriceps,Western Blot was used to detect the protein expression of rat cortical SLC7A11 and GPX4,Enzyme-linked immunosorbent assay(ELISA)was used to detect the GSH content of rat cortex,and real time RT-PCR was used to detect the mRNA of rat cortical SLC7A11 and GPX4 mRNA expression.Results:Neurological function scores were elevated;quadriceps muscle tone was increased;GSH content was decreased;the protein expression of SLC7A11 and GPX4 was significantly decreased;the expression of SLC7A11 mRNA and GPX4 mRNA was significantly decreased.Electroacupuncture treatment resulted in lower neurological function scores,lower quadriceps muscle tone,increased GSH content in rat cortex,significantly up-regulated protein expression of SLC7A11 and GPX4,and significantly increased expression of SLC7A11 and GPX4 mRNA.Conclusion:Electroacupuncture on"Yanglingquan"and"Quchi"could improve limb spasticity and promote the recovery of neurological function in PSS rats,and its mechanism of action may be related to the inhibition of ferroptosis of cortical cells by electroacupuncture regulating the SLC7A11 and GPX4 expression.
ABSTRACT
Objective:To investigate the clinical efficacy of neuroendoscopic hematoma removal versus soft channel drainage in the treatment of chronic subdural hematoma. Methods:The clinical data of 102 patients with chronic subdural hematoma who received treatment in Jincheng People's Hospital from May 2018 to May 2020 were retrospectively analyzed. They were divided into the neuroendoscopy group ( n = 50) and the soft channel group ( n = 52) according to different surgical methods. Perioperative indexes, hematoma clearance rate, China Stroke Scale score, the activity of daily living score, and oxidative stress indexes were compared between the two groups. All patients were followed up for 3 months. The incidence of complications during the follow-up period was calculated. Results:The retention time of the drainage tube in the neuroendoscopy group was shorter than that in the soft channel group [(2.45 ± 0.63) days vs. (3.30 ± 0.78) days, t = 6.06, P < 0.001]. The length of hospital stay in the neuroendoscopy group was shorter than that in the soft channel group [(7.14 ± 1.65) days vs. (9.07 ± 2.11) days, t = 5.15, P < 0.001]. The hematoma clearance rate at postoperative 7 days in the neuroendoscopy group was higher than that in the soft channel group [(93.45 ± 5.50)% vs. (81.86 ± 7.24)%, χ2 = 9.12, P < 0.001]. There were no significant differences in operation time and intraoperative blood loss between the two groups (both P > 0.05). At postoperative 30 days, the China Stroke Scale score in the neuroendoscopy group was lower than that in the soft channel group [(12.74 ± 2.23) points vs. (18.67 ± 2.45) points, t = 12.79, P < 0.001]. The activity of daily life score in the neuroendoscopy group was significantly higher than that in the soft channel group [(77.69 ± 7.11) points vs. (91.35 ± 7.25) points, t = 9.60, P < 0.001]. At postoperative 7 days, glutathione peroxidase level in the neuroendoscopy group was significantly lower than that in the soft channel group [(130.75 ± 13.66) U/L vs. (148.60 ± 14.64) U/L, t = 6.37, P < 0.001]. Malondialdehyde level in the neuroendoscopy group was significantly lower than that in the soft channel group [(5.11 ± 0.65) nmol/L vs. (6.19 ± 0.74) nmol/L, t = 7.83, P < 0.001]. Superoxide dismutase level in the neuroendoscopy group was significantly higher than that in the soft channel group [(275.60 ± 22.33) U/L vs. (254.60 ± 18.55) U/L, t = 5.15, P < 0.001]. There was no significant difference in the incidence of complications between the two groups ( P > 0.05). Conclusion:Compared with soft channel drainage, neuroendoscopic hematoma removal can obtain better short-term curative effects and less oxidative stress response in the treatment of chronic subdural hematoma. Neuroendoscopic hematoma removal does not increase the incidence of postoperative complications and is highly safe.
ABSTRACT
Objective:To explore the effect and mechanism of diosmetin (Dio) on neuronal ferroptosis in rats with bacterial meningitis (BM).Methods:Male SD rats aged 6-7 weeks of SPF grade were selected for the experiment. The BM model was established by injecting group B hemolytic streptococcus into the cisterna magna of cerebellum. Sixty BM model rats were successfully modeled and divided into model group, low-dose Dio group, medium-dose Dio group, high-dose Dio group and inhibitor group according to the random number table method, with 12 rats in each group. Another 12 weight-matched rats were taken as the control group.The rats in the low-dose Dio group, medium-dose Dio group, high-dose Dio group and the inhibitor group were intragastrically administered with Dio at 50 mg/kg, 100 mg/kg, 200 mg/kg and 200 mg/kg, respectively. The rats in the control group were intragastrically administered with an equal volume of 0.9 % sodium chloride solution. On the day of intragastric administration, the rats in the inhibitor group were intraperitoneally injected with SIRT1 pathway inhibitor EX527 (10 mg/kg), and the rats in the other groups were injected with an equal volume of 0.9% sodium chloride solution. The above interventions were performed once a day for 28 consecutive days. Loeffler neurological score was used to evaluate the neurological impairment in rats. Interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in cerebrospinal fluid of rats were detected by ELISA. The number of white blood cells in cerebrospinal fluid was detected by a blood cell analyzer. Glutathione (GSH) was detected by micro-enzyme labeling method, malondialdehyde (MDA) was detected by thiobarbituric acid colorimetric method, reactive oxygen species(ROS) was detected by colorimetry, and Fe 2+ level was detected by ferrozine method. Hematoxylin-eosin staining, Prussian blue staining and TUNEL staining were used to observe the pathological damage, iron accumulation and apoptosis in the hippocampus, respectively.Western blot was applied to measure the expression of transferrin (Tf), proliferating cell nuclear antigen (PCNA), Bcl-2-associated X protein (Bax), caspase-3 and SIRT1/Nrf2/HO-1/Gpx4 signaling pathway proteins. Graphpad Prism 9.0 was used for data analysis. One-way ANOVA was used for statistical analysis, and SNK- q test was used for further pairwise comparisons. Results:(1) There was a statistically significant difference in neurological function scores among the 6 groups of rats ( F=125.451, P<0.001). The neurological function score of the model group was lower than that of control group, while the neurological function scores of the low-dose Dio group, medium-dose Dio group, and high-dose Dio group were higher than those of the model group (all P<0.05). The neurological function score of the inhibitor group ((2.57±0.26)) was lower than that of high-dose Dio group ((4.34±0.48)) ( P<0.05). (2) There were statistically significant differences in the levels of IL-6, TNF-α and the number of white blood cells in the cerebrospinal fluid of rats among the 6 groups ( F=127.817, 102.413, 180.967, all P<0.001). The levels of IL-6, TNF-α and the number of white blood cells in model group were higher than those of control group(all P<0.05). The levels of IL-6, TNF-α and the number of white blood cells in low-dose Dio group, medium-dose Dio group and high-dose Dio group were lower than those of model group (all P<0.001), and those in inhibitor group were all higher than those in high-dose Dio group(all P<0.001). (3) There were statistically significant differences in iron deposition rate and neuronal apoptosis rate among the 6 groups of rats ( F=90.857, 88.835, both P<0.001). The iron deposition rate ((18.37±3.14)%) and neuronal apoptosis rate ((27.58±2.63)%) in the inhibitor group were higher than those in the high-dose Dio group ((6.35±1.08)%, (14.02±1.87)%) (both P<0.05). (4) The levels of GSH, ROS, MDA, and Fe 2+ in the hippocampus of the 6 groups of rats showed statistically significant differences ( F=54.465, 106.453, 55.969, 105.457, all P<0.001). The GSH content in the inhibitor group ((103.48±8.76) mmol/g) was lower than that in the high-dose Dio group ((133.97±10.54) mmol/g), while the contents of ROS, MDA, Fe 2+ ((225.17±16.32) μmol/mg, (10.73±1.58) μmol/mg, (62.71±5.43) μg/g) were higher than those of the high-dose Dio group ((131.87±11.67) μmol/mg, (4.35±0.87) μmol/mg, (34.86±2.95) μg/g) (all P<0.05). (5)There were statistically significant differences in the protein levels of Tf, PCNA, Bax, caspase-3, SIRT1, Nrf2, HO-1 and Gpx4 in the hippocampus of the 6 groups of rats ( F=120.179, 107.568, 157.265, 98.031, 90.932, 52.283, 59.424, 114.539, all P<0.001). The protein levels of Tf, Bax and caspase-3 in the hippocampus of inhibitor group were higher than those of the high-dose Dio group, while the protein levels of PCNA, SIRT1, Nrf2, HO-1, Gpx4 were lower than those of the high-dose Dio group (all P<0.05). Conclusion:Diosmetin can activate SIRT1/Nrf2/HO-1/Gpx4 signaling pathway, thereby inhibiting neuronal ferroptosis in BM rats.
ABSTRACT
Objective:To evaluate the role of nuclear factor-erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase-4 (GPX4) signaling pathway-mediated ferroptosis in midazolam-induced reduction of hypoxic-ischemic brain damage (HIBD) in neonatal rats.Methods:Ninety healthy 7-day-old neonatal rats, weighing 16-20 g, were divided into 6 groups ( n=15 each) using the random number table method: sham operation group (Sham group), HIBD group, low-dose midazolam (10 mg/kg) group (group L), medium-dose midazolam (20 mg/kg) group (group M), high-dose midazolam (40 mg/kg) group (group H), and Nrf2 inhibitor ML385 group (group I). The HIBD model was developed by ligating the left carotid artery and exposing to a hypoxic condition for 2 h in anesthetized animals. Starting from 2nd day after developing the model, the corresponding doses of midazolam were intraperitoneally injected in midazolam groups, the equal volume of normal saline was intraperitoneally injected in Sham and HIBD groups, midazolam 40 mg/kg and Nrf2 inhibitor ML385 30 mg/kg were intraperitoneally injected once a day for 8 consecutive days in group I. The rats were weighed and subjected to the Morris water maze test after the end of administration. Blood samples were taken from the abdominal aorta after the end of the Morris water maze test, and then the animals were sacrificed to remove the brain for determination of the concentrations of serum iron, interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) (by enzyme-linked immunosorbent assay), contents of iron and GSH in hippocampal tissues (by ultraviolet spectrophotometry and micro method), the number of Nrf2/neuronal nuclear antigen (NeuN) and GPX4/NeuN positive cells (by immunofluorescent staining), and expression of Nrf2, GPX4, and 4-hydroxynonaenoic acid (4-HNE) in hippocampal tissues and for microscopic examination of the pathological changes of hippocampal neurons in brain tissues (after HE staining and Nissl staining). Results:Compared with Sham group, the first time to arrival at platform was significantly prolonged, the number of crossing the origional platform was reduced, and the time of staying at the target quadrant was shortened, the iron content in the hippocampal tissues was increased, the content of GSH and the number of Nrf2/NeuN and GPX4/NeuN positive cells were decreased, the expression of Nrf2 and GPX4 was down-regulated, the expression of 4-HNE was up-regulated, the concentrations of serum iron, IL-6 and TNF-α were increased, and the injury to hippocampal neurons was marked in HIBD group ( P<0.05). Compared with HIBD group, the first time to arrival at platform was significantly shortened, the number of crossing the origional platform was increased, and the time of staying at the target quadrant was prolonged, the iron content in the hippocampus tissues was decreased, the content of GSH and the number of Nrf2/NeuN and GPX4/NeuN positive cells were increased, the expression of Nrf2 and GPX4 was up-regulated, the expression of 4-HNE was down-regulated, the concentrations of serum iron, IL-6 and TNF-α were decreased ( P<0.05), and the injury to hippocampal neurons was significantly reduced in H, M and L groups. Compared with group H, the first time to arrival at platform was significantly prolonged, the number of crossing the origional platform was reduced, and the time of staying at the target quadrant was shortened, the iron content in the hippocampus tissue was increased, the content of GSH and the number of Nrf2/NeuN and GPX4/NeuN positive cells were decreased, the expression of Nrf2 and GPX4 was down-regulated, the expression of 4-HNE was up-regulated, the concentrations of serum iron, IL-6 and TNF-α were increased ( P<0.05), and the injury to hippocampal neurons was aggravated in group I. Conclusions:The mechanism by which midazolam reduces HIBD may be related to activation of the Nrf2/GPX4 signaling pathway and inhibition of hippocampal neuronal ferroptosis in neonatal rats.