Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Int. j. high dilution res ; 19(4): 2-9, 2020.
Article in English | LILACS, HomeoIndex | ID: biblio-1146533


IntroductionNosodes, the homeopathicpreparationssourcedfrom biological materials including clinical samples, cultures of organisms, and diseased tissues have been in use against the source-specific infections as well as other diseases. The nosodes have demonstrated some efficacy in managing epidemics, such as influenza, dengue, and leptospirosis.This article presents the need and process of development ofnosodes from the SARS-CoV-2 to explore its prophylactic and therapeutic potentials against certain related viral diseases.Materials and methodsA clinical sample of SARS-Cov-2 positive patient,based on the cycle threshold (CT) value of the qRT-PCR, heat-inactivated SARS-CoV-2, and spike glycoprotein all were processed for making nosodesas per the method described in Homoeopathy Pharmacopoeia of India.Molecular tests, such as qRT-PCR and sterility tests were performed to establish the live organisms, RNA material, and the absence of contamination.ResultsThree variants of CoronavirusNosodewere developed using a clinical sample,heat-inactivatedSARS-CoV-2, and spike glycoprotein.In potencies 3c and above, no detectableSARS-CoV-2 RNA material was found by PCR.The analytical results for nosodes were reported as compliant for sterility testing as per the IP.ConclusionThree variants of Coronavirus nosodes were preparedwhich need to be evaluated further through pre-clinical and clinical studies.(AU)

Humans , /pharmacology , Coronavirus Infections/therapy , Drug Compounding , Spike Glycoprotein, Coronavirus , Betacoronavirus , Virus Inactivation , Betacoronavirus/drug effects
Journal of Veterinary Science ; : 241-247, 2006.
Article in English | WPRIM | ID: wpr-72559


The ability of a heat-inactivated whole virus from a highly virulent infectious bursal disease virus (hvIBDV) and VP2 protein from hvIBDV expressed in E. coli provided protection against a hvIBDV challenge in specificpathogen- free (SPF) chickens. Six out of seven chickens that were injected three times with crude VP2 protein developed significant antibody titer against IBDV. However, only four out of the seven chickens survived the hvIBDV challenge. Despite showing low antibody titer profiles, all chickens immunized with the heat-inactivated whole virus also survived the challenged with hvIBDV. However, all of these chickens had bursal atrophy and mild to moderate depletion of lymphocytes. Thus, antibodies raised against IBDV VP2 protein expressed in E. coli and denatured IBDV proteins induced some degree of protection against mortality but not against bursal damage following challenge with hvIBDV.

Animals , Antibodies, Viral/blood , Birnaviridae Infections/immunology , Chickens , Enzyme-Linked Immunosorbent Assay/veterinary , Escherichia coli/genetics , Immunization/standards , Infectious bursal disease virus/genetics , Poultry Diseases/immunology , Recombinant Proteins/genetics , Specific Pathogen-Free Organisms , Vaccines, Attenuated/immunology , Vaccines, Synthetic/immunology , Viral Structural Proteins/biosynthesis , Viral Vaccines/immunology