ABSTRACT
The use of herbicides is a represents an efficient way to control the infesting plant population, since it is associated with low operational cost, and it does not demand large amounts of labour. An obstacle to growing cowpea (Vigna unguiculate) is the absence of herbicides registered for this crop. The objective of this work was to evaluate the tolerance of cowpea to herbicides. The experiment was carried out in a randomised block with treatment controls with and without weeding, Bentazon (720 g ha-1), Fluazifop-p-butyl (250 g ha-1), Fomesafen and a tank mix between Fluazifop-p-butyl + Fomesafen (250 + 187.5 g ha-1) with treatment replicates. The herbicides were applied on vegetative (V3 stage) cowpea plants using a CO2-pressurised backpack sprayer with four spray tips TT 110.02 operating at a pressure of 2.5 bar and applying 240 litres of syrup per hectare. The cultivar BRS Guariba, with five planting lines per plot, was tested with the three central lines of the useful area, scoring 0.5 m of the ends. The species Oxalis latifolia was difficult to control. The Fluazifop-p-butyl + Fomesafen mixture presented better control of weeds. The herbicides caused phytotoxicity to cowpea and reduced leaf area and dry mass. The productivity of the crop was affected due to the low control of weeds. It was concluded that the cowpea presented differential tolerance to the herbicides tested doses.
O uso de herbicidas é uma alternativa promissora, pois permite um controle eficiente da população de plantas infestantes, associado a baixo custo operacional e sem exigir grandes quantidades de mão de obra. No entanto, um entrave no controle de plantas daninhas no feijão-caupi é a ausência de herbicidas registrados para essa cultura. Objetivou-se com este trabalho avaliar a tolerância do feijão-caupi cultivar BRS Guariba, a herbicidas. Um ensaio foi conduzido a campo em blocos casualizados composto dos tratamentos, testemunhas com e sem capina, Bentazon (720 g i.a. ha-1), Fluazifop-p-butyl (250 g i.a. ha-1), Fomesafen (187,5 g i.a. ha-1) e mistura de tanque entre Fluazifop-p-butyl + Fomesafen (250 + 187,5 g i.a. ha-1) com 4 repetições. Os herbicidas foram aplicados com plantas de caupi em estágio vegetativo V3 com pulverizador costal pressurizado por CO2 com quatro pontas de pulverização TT 110.02 operando a uma pressão de 2,5 Bar e aplicando 240 L ha-1 de calda. As parcelas foram compostas 5 linhas de plantio com cinco metros de comprimento, espaçadas de 0,5 m, com as 3 linhas centrais de área útil, desprezando 0,5 m das extremidades. Avaliou-se a comunidade infestante, a eficiência de controle de plantas daninhas, a tolerância e a produtividade do feijão-caupi. A espécie Oxalis latifolia foi encontrada em todos os tratamentos e apresentou difícil controle. A mistura Fluazifop-p-butyl + Fomesafen apresentou melhor controle das plantas daninhas. Os herbicidas ocasionaram fitotoxicidade ao feijão-caupi e redução de área foliar e massa seca de plantas. A produtividade da cultura foi reduzida nos tratamentos com baixo controle de plantas daninhas bem como nos tratamentos que provocaram toxicidade elevada. Conclui-se que o feijão-caupi apresentoutolerância diferencial aos herbicidas nas doses testadas.
Subject(s)
Plant Weeds , Vigna , HerbicidesABSTRACT
The environmental risk assessment of the herbicide tolerant genetically modified oilseed rape MON 88302 (Reference EFSA/GMO/BE/2011/101) has been performed by the Panel on Genetically Modified Organisms (GMO) of the Norwegian Scientific Committee for Food Safety (VKM). VKM has been requested by the Norwegian Directorate for Nature Management and the Norwegian Food Safety Authority to issue a preliminary scientific opinion on the safety of the genetically modified oilseed rape MON 88302 (Unique identifier MON-88Ø2-9) for food and feed uses, import and processing, and submit relevant scientific comments or questions to EFSA on the application EFSA/GMOBE/2011/101. The environmental risk assessment of the MON 88302 is based on information provided by the applicant in the application EFSA/GMO/BE/2011/101, and scientific comments from EFSA and other member states made available on the EFSA website GMO Extranet. The risk assessment also considered peer-reviewed scientific literature as relevant. The VKM GMO Panel has evaluated MON 88302 with reference to its intended uses in the European Economic Area (EEA), and according to the principles described in the Norwegian Food Act, the Norwegian Gene Technology Act and regulations relating to impact assessment pursuant to the Gene Technology Act, Directive 2001/18/EC on the deliberate release into the environment of genetically modified organisms, and Regulation (EC) No 1829/2003 on genetically modified food and feed. The Norwegian Scientific Committee for Food Safety has also decided to take account of the appropriate principles described in the EFSA guidelines for the risk assessment of GM plants and derived food and feed (EFSA 2006, 2011a), the environmental risk assessment of GM plants (EFSA 2010), the selection of comparators for the risk assessment of GM plants (EFSA 2011b), and for the post-market environmental monitoring of GM plants (EFSA 2006, 2011c). The scientific risk assessment of oilseed rape MON 88302 include molecular characterisation of the inserted DNA and expression of target proteins, comparative assessment of agronomic and phenotypic characteristics, unintended effects on plant fitness, potential for horizontal and vertical gene transfer, and evaluations of the post-market environmental plan. In line with its mandate, VKM emphasized that assessments of sustainable development, societal utility and ethical considerations, according to the Norwegian Gene Technology Act and Regulations relating to impact assessment pursuant to the Gene Technology Act, shall not be carried out by the Panel on Genetically Modified Organisms. The GMO Panel has therefore not considered possible health and environmental effects of cultivation and processing of oilseed rape MON 88302 outside the EU/EEA area. The genetically modified oilseed rape MON 88302 was developed to provide tolerance to the herbical active substance glyphosate by the introduction of a gene coding for the enzyme 5enolpyruvylshikimate-3-phosphate synthase (EPSPS) from Agrobacterium tumefaciens, strain CP4 (CP4 EPSPS). Glyphosate is a non-selective herbicide and is normally phytotoxic to a broad range of plants. Its mode of action occurs by binding to and inactivating the EPSPS protein, which is a key enzyme in the shikimate pathway that leads to the biosynthesis of the aromatic amino acids tyrosine, tryptophan and phenylalanine. The disruption of this pathway and the resulting inability to produce key amino acids prevents growth and ultimately leads to plant death. Molecular characterization: The VKM Panel on Genetically Modified Organisms find the conclusion that no major section of the T-DNA plasmid backbone is inserted in MON88302 oilseed rape justified. We also find it justified that there is only one major T-DNA insert in MON88302. Comparative assessment: Based on results from comparative analyses of data from field trials located at representative sites and environments in the USA, Canada and Chile, it is concluded that oilseed rape MON 88302 is agronomically and phenotypically equivalent to the conventional counterpart and commercial available reference varieties, with the exception of the herbicide tolerance conferred by the CP4 EPSPS protein. The field evaluations support a conclusion of no phenotypic changes indicative of increased plant weed/pest potential of MON 88302 compared to conventional oilseed rape. Furthermore, the results demonstrate that in-crop applications of glyphosate herbicide do not alter the phenotypic and agronomic characteristics of MON 88302 compared to conventional oilseed rape. Evaluations of environmental interactions between genetically modified oilseed rape MON 88302 and the biotic and abiotic environment, and studies of seed dormancy, seed germination, pollen morphology and viability indicates no unintended effects of the introduced trait on these characteristics in MON 88302 oilseed rape. Environmental risk: Considering the scope of the application EFSA/GMO/BE/2011/101, excluding cultivation purposes, the environmental risk assessment is limited to exposure through accidental spillage of viable seeds of MON 88302 into the environment during transportation, storage, handling, processing and use of derived products. Oilseed rape is mainly a self-pollinating species, but has entomophilous flowers capable of both self- and cross-pollinating. Normally the level of outcrossing is about 30 %, but outcrossing frequencies up to 55 % are reported. Several plant species related to oilseed rape that are either cultivated, occurs as weeds of cultivated and disturbed lands, or grow outside cultivation areas to which gene introgression from oilseed rape could be of concern. These are found both in the Brassica species complex and in related genera. A series of controlled crosses between oilseed rape and related taxa have been reported in the scientific literature. Because of a mismatch in the chromosome numbers most hybrids have a severely reduced fertility. Exceptions are hybrids obtained from crosses between oilseed rape and wild turnip (B. rapa ssp. campestris) and to a lesser extent, mustard greens (B.juncea), where spontaneously hybridising and transgene introgression under field conditions have been confirmed. Wild turnip is native to Norway and a common weed in arable lowlands. There is no evidence that the herbicide tolerant trait results in enhanced fitness, persistence or invasiveness of oilseed rape MON 88302, or hybridizing wild relatives, compared to conventional oilseed rape varieties, unless the plants are exposed to glyphosate-containing herbicides. However, accidental spillage and loss of viable seeds of MON 88302 during transport, storage, handling in the environment and processing into derived products is likely to take place over time, and the establishment of small populations of oilseed rape MON 88302 on locations where glyphosate is frequently applied to control weeds e.g. on railway tracks, cannot be excluded. Feral oilseed rape MON 88302 arising from spilled seed could theoretically pollinate conventional crop plants if the escaped populations are immediately adjacent to field crops, and shed seeds from cross-pollinated crop plants could emerge as GM volunteers in subsequent crops. However, both the occurrence of feral oilseed rape resulting from seed import spills and the introgression of genetic material from feral oilseed rape populations to wild populations are likely to be low in an import scenario. Apart from the glyphosate tolerance trait, the resulting progeny will not possess a higher fitness and will not be different from progeny arising from cross-fertilisation with conventional oilseed rape varieties. The VKM GMO Panel concludes that this route of gene flow would not introduce significant numbers of transgenic plants into agricultural areas or result in any environmental consequences in Norway. The environmental risk assessment will be completed and finalized by the VKM Panel on Genetically Modified Organisms when requested additional information from the applicant is available.
ABSTRACT
The Norwegian Environment Agency (NEA) and the Norwegian Food Safety Authority (NFSA) requested the Norwegian Scientific Committee for Food Safety (Vitenskapskomiteen for mattrygghet, VKM) for an opinion of potential risks to biodiversity and agriculture in Norway associated with import of seeds for sowing and cultivation of insect-resistant and herbicide tolerant genetically modified maize Bt11 under Directive 2001/18/EC (Notification C/F/96.05.10). The notification is still pending for authorisation in the European Union. VKM is also requested to assess the applicant´s post-market environmental monitoring plan, and the management measures suggested in the draft implementing decision of the European Commission. As the scope of the notification does not cover food and feed uses of maize Bt11, VKM was not asked for a health risk assessment of maize Bt11. However, VKM has decided to update a previous safety evaluation of the food and feed uses of maize Bt11 and derived products (VKM, 2014). VKM appointed a working group consisting of members from the Panel on Genetically Modified Organisms, the Panel on Alien Organisms and trade in Endangered Species (CITES) and the VKM staff to answer the requests. The Panel on Genetically Modified Organisms assessed and approved the final report. The genetically modified maize Bt11 was developed to provide protection against certain lepidopteran target pests, such as the European corn borer (ECB, Ostrinia nubilalis), and some species belonging to the genus Sesamia . The insect resistence is achieved by the expression of a truncated form of a Cry1Ab protein encoded by a modified cry1Ab gene derived from the soil microorganism Bacillus thuringiensis subsp kurstaki HD-1. Maize Bt11 also expresses the phosphinothricin - N - ace tyltransferase (pat) gene, derived from the soil microorganism Streptomyces viridochromogenes strain Tu494, which encodes the enzyme: phosphinothricin acetyl transferase (PAT). PAT protein confers tolerance to the herbicidal active substance glufosinate-ammonium. The PAT protein expressed in Bt11 was used as a selectable marker to facilitate the selection process of transformed plant cells and is not intended for weed management purposes. Since the scope of the notification C/F/96.05.10 does not cover the use of glufosinate-ammonium-containing herbicides on maize Bt11, potential effects due to the use of such herbicides on maize Bt11 are not considered by VKM. In delivering its scientific opinion, VKM considered relevant peer-reviewed scientific publications and information provided by the applicant in the notification C/F/96.05.10, the renewal application EFSA/GMO/RX/Bt11, and scientific opinions and comments from EFSA and other EU-member states. VKM has evaluated maize Bt11 with reference to its intended uses in the European Economic Area (EEA), and according to the principles described in the Norwegian Food Act, the Norwegian Gene Technology Act and regulations relating to impact assessment pursuant to the Gene Technology Act, Directive 2001/18/EC on the deliberate release into the environment of genetically modified organisms, and Regulation (EC) No 1829/2003 on genetically modified food and feed. The Norwegian Scientific Committee for Food Safety has also decided to take account of the appropriate principles described in the EFSA guidelines for the risk assessment of GM plants and derived food and feed (EFSA 2011a), the environmental risk assessment of GM plants (EFSA 2010a), selection of comparators for the risk assessment of GM plants (EFSA, 2011b) and for the post-market environmental monitoring of GM plants (EFSA, 2011c). The scientific risk assessment of maize Bt11 includes molecular characterisation of the inserted DNA and expression of novel proteins, comparative assessment of agronomic and phenotypic characteristics, nutritional assessments, toxicology and allergenicity. An evaluation of unintended effects on plant fitness, potential for gene transfer, interactions between the GM plant and target and non-target organisms, effects on biogeochemical processes, the post-market environmental monitoring plan and coexistence measures at the farm level has also been undertaken. It is emphasised that the VKM mandate does not include assessments of contribution to sustainable development, societal utility and ethical considerations, according to the Norwegian Gene Technology Act and Regulations relating to impact assessment pursuant to the Gene Technology Act. These considerations are therefore not part of the risk assessment provided by the VKM. Molecular Characterization: Appropriate analyses of the integration site, inserted DNA sequence, flanking regions, and bioinformatics have been performed. The molecular characterisation reported by the applicant shows that the DNA-fragment containing the cry1Ab and pat genes, is integrated as a single copy at a single locus in the nuclear genome of maize Bt11 and that it is stably inherited as a dominant trait. VKM considers the molecular characterisation of maize Bt11 satisfactory. Comparative Assessment: Comparative analyses of data from field trials located at representative sites and environments in North America and Europe indicates that maize Bt11 is compositionally equivalent to its conventional counterpart, with the exception of the herbicide tolerance and insect resistance traits, conferred by the expression of the PAT and Cry1Ab proteins. However, data on the amino acid tryptophan, is only given in one out of six studies. Based on current knowledge, VKM concludes that maize Bt11 is compositionally equivalent to conventional maize. The data provided by the applicant are not sufficient to show that Bt11 maize is phenotypically and agronomically equivalent to conventional near-isogenic maize lines. The agronomic assessment data are provided from one growing season in the North America and one growing season in France. This is not considered to be sufficient for representative testing of agricultural environments. Food and Feed Risk Assessment: Whole food feeding studies have not indicated any adverse health effects of maize Bt11. These studies further support that maize Bt11 is nutritionally equivalent to conventional maize. The Cry1Ab and PAT proteins do not show sequence resemblance to other known toxins or IgE allergens, nor have they been reported to cause IgE mediated allergic reactions. Some studies have however indicated a potential role of Cry-proteins as adjuvants in allergic reactions. Based on current knowledge, the VKM concludes that maize Bt11 is nutritionally equivalent to conventional maize varieties. It is unlikely that the Cry1Ab and PAT proteins will introduce a toxic or allergenic potential in food or feed based on maize Bt11 compared to conventional maize. Environmental Risk Assessment: Maize is the only representative of the genus Zea in Europe, and there are no cross-compatible wild or weedy relatives outside cultivated maize with which maize can hybridise and form backcross progeny. Vertical gene transfer in maize therefore depends on cross-pollination with other conventional or organic maize varieties. In addition, unintended admixture of genetically modified material in seeds represents a possible way for gene flow between different crop cultivations. The risk of pollen flow from maize volunteers is negligible under Norwegian growing conditions. Since maize Bt11 has no altered agronomic and phenotypic characteristics, except for the specific target insect resistance and herbicide tolerance, the likelihood of unintended environmental effects as a consequence of spread of genes from maize Bt11 is considered to be extremely low. There are no reports of the target lepidopteran species attaining pest status on maize in Norway. Since there are no Bt-based insecticides approved for use in Norway, and lepidopteran pests have not been registered in maize, issues related to resistance evolution in target pests are not relevant at present for Norwegian agriculture. Published scientific studies showed that the likelihood of negative effects of Cry1Ab protein on non-target arthropods that live on or in the vicinity of maize plants is low. In Norway, the maize cultivation is marginal. The total crop area of forage maize is estimated to 2000-2800 decares, equivalent to less than 0.1% of the areas with cereal crops. The area of individual fields is limited by the topography such that the quantity of maize pollen produced under flowering is also limited. The potential exposure of Cry1Ab-containing maize pollen on non-target lepidopteran species in Norway is therefore negligible. Cultivation of maize Bt11 is not considered to represent a threat to the prevalence of red-listed species in Norway. Exposure of nontarget organisms to Cry proteins in aquatic ecosystems is likely to be very low, and potential exposure of Cry proteins to non-target organisms in aquatic ecosystems in Norway is considered to be negligible. VKM concludes that, although the data on the fate of the Cry1Ab protein and its potential interactions in soil are limited, the relevant scientific publications analysing the Cry1Ab protein, together with the relatively broad knowledge about the environmental fate of other Cry1 proteins, do not indicate significant direct effects on the soil environment. Despite limited number of studies, most studies conclude that effects on soil microorganisms and microbial communities are transient and minor compared to effects caused by agronomic and environmental factors. However, data are only available from short-term experiments and predictions of potential long-term effects are difficult to deduce. Coexistence: VKM concludes that separation distances of 200 meters most likely will ensure coexistence between genetically modified maize and conventional and organic maize varieties in Norway. Overall Conclusion: Based on current knowledge, VKM concludes that maize Bt11 is nutritionally equivalent t
ABSTRACT
In preparation for a legal implementation of EU-regulation 1829/2003, the Norwegian Scientific Committee for Food Safety (VKM) has been requested by the Norwegian Environment Agency and the Norwegian Food Safety Authority (NFSA) to conduct final food/feed and environmental risk assessments for all genetically modified organisms (GMOs) and products containing or consisting of GMOs that are authorized in the European Union under Directive 2001/18/EC or Regulation 1829/2003/EC. The request covers scope(s) relevant to the Gene Technology Act. The request does not cover GMOs that VKM already has conducted its final risk assessments on. However, the Agency and NFSA requests VKM to consider whether updates or other changes to earlier submitted assessments are necessary. The insect-resistant and glyphosate-tolerant genetically modified maize MON 89034 x MON 88017 from Monsanto (Unique Identifier MON-89Ø34-3 × MON-88Ø17-3) was approved under Regulation (EC) No 1829/2003 in the EU for food and feed uses, import and processing on 17th of June 2011 (Commission Decision 2011/366/EC). Genetically modified maize MON 890314 x MON 88017 has previously been risk assessed by the VKM Panel on Genetically Modified Organisms (GMO), commissioned by the Norwegian Food Safety Authority and the Norwegian Environment Agency related and to the EFSA public hearing of the applications EFSA/GMO/NL/2007/39 and EFSA/GMO/BE/2009/71 in 2007 and 2009/2010 (VKM 2008a, VKM 2010a). In addition, the parental lines MON 89034 and MON 88017 have been evaluated by the VKM GMO Panel as single events and as a component of several stacked GM maize events (VKM 2007a,b, VKM 2008b, VKM 2009a,b,c, VKM 2010b,c, VKM 2012, VKM 2013, VKM 2014). The food/feed and environmental risk assessment of the maize MON 89034 x MON 88017 is based on information provided by the applicant in the applications EFSA/GMO/NL/2007/39 EFSA/GMO/BE/2009/71 and scientific comments from EFSA and other member states made available on the EFSA website GMO Extranet. The risk assessment also considered other peer-reviewed scientific literature when relevant. The VKM GMO Panel has evaluated MON 89034 x MON 88017 with reference to its intended uses in the European Economic Area (EEA), and according to the principles described in the Norwegian Food Act, the Norwegian Gene Technology Act and regulations relating to impact assessment pursuant to the Gene Technology Act, Directive 2001/18/EC on the deliberate release into the environment of genetically modified organisms, and Regulation (EC) No 1829/2003 on genetically modified food and feed. The Norwegian Scientific Committee for Food Safety has also decided to take account of the appropriate principles described in the EFSA guidelines for the risk assessment of GM plants and derived food and feed (EFSA 2011a), the environmental risk assessment of GM plants (EFSA 2010), selection of comparators for the risk assessment of GM plants (EFSA 2011b) and for the post-market environmental monitoring of GM plants (EFSA 2011c). The scientific risk assessment of maize MON 89034 x MON 88017 include molecular characterisation of the inserted DNA and expression of novel proteins, comparative assessment of agronomic and phenotypic characteristics, nutritional assessments, toxicology and allergenicity, unintended effects on plant fitness, potential for gene transfer, effects on biogeochemical processes and interactions between the GM plant and target and non-target organisms. It is emphasised that the VKM mandate does not include assessments of contribution to sustainable development, societal utility and ethical considerations, according to the Norwegian Gene Technology Act and Regulations relating to impact assessment pursuant to the Gene Technology Act. These considerations are therefore not part of the risk assessment provided by the VKM Panel on Genetically Modified Organisms. Likewise, the VKM mandate does not include evaluations of herbicide residues in food and feed from genetically modified plants.The hybrid maize MON 89034 x MON 88017 has been produced by conventional crosses between inbred lines containing MON 89034 and MON 88017 events to combine resistance to certain coleopteran and lepidopteran pests, and to confer tolerance towards glyphosate-containing herbicides. Maize MON 89034 was developed to provide protection against specific lepidopteran target pest, including Ostrinia nubilalis , S podoptera spp. and Agrotis ipsilon. Protection is achieved through expression in the plant of two insecticidal Cry proteins, Cry1A.105 and Cry2Ab2, derived from Bacillus thuringiensis subsp. a izawai and kurstaki. Maize MON 88017 was developed to express a modified Cry3Bb1 insecticidal protein, derived from B. thuringiensis subsp. kumamotoensis , which confers protection against coleopteran target pests belonging to the genus Diabrotica such as Western corn rootworm ( D . virgifera virgifera ). MON 88017 is also developed to provide tolerance to the herbicidal active substance glyphosate by the introduction of a gene coding for the enzyme 5enolpyruvylshikimate-3-phosphate synthase (EPSPS), from Agrobacterium tumefaciens strain CP4 (CP4 EPSPS). Molecular Characterisation: Southern and PCR analyses indicate that the recombinant inserts in the single maize events MON 89034 and MON 88017 are retained in the stacked event MON 89034 x MON 88017. Genetic stability of the inserts has previously been demonstrated in the single events. The levels of Cry1A.105, Cry2Ab2, CP4 EPSPS and Cry3Bb1 proteins in grain and forage from the stacked event are comparable to the levels in the corresponding single events. Phenotypic analyses also indicate stability of the insect resistance and herbicide tolerance traits of the stacked event. Based on current knowledge and the previous assessments of the parental maize events, the VKM GMO Panel considers the molecular characterisation of maize MON 89034 x MON 88017 satisfactory. Comparative Assessment: Comparative analyses of maize MON 89034 x MON 88017 and its conventional counterpart have been performed by the applicant during field trials located at representative sites and environments in USA during 2004, and in Europe in 2007. Several different conventional maize varieties were included in the field trials and used as references. With the exception of small variations, and the insect resistance and herbicide tolerance conferred by the Cry3Bb1, Cry1A105, Cry2Ab2, and CP4 EPSPS proteins, the results from these studies showed no biologically relevant differences between the maize stack MON 89034 x MON 88017 and its conventional counterpart. Based on the assessment of available data, the VKM GMO Panel concludes that maize MON 89034 x MON 88017 is compositionally, agronomically and phenotypically equivalent to its conventional counterpart, except for the new proteins. Food and Feed Safety Assessment: A whole food feeding study performed on broilers indicates no adverse health effects of maize MON 89034 x MON 88017, and shows that it is nutritionally equivalent to conventional maize varieties. The Cry1A.105, Cry2Ab2, Cry3Bb1 and CP4 EPSPS proteins do not show relevant sequence resemblance to other known toxins or IgE-allergens, nor have they been reported to cause IgE-mediated allergic reactions. However, some studies have indicated a potential role of Cry-proteins as adjuvants in allergic reactions. Based on current knowledge, the VKM GMO Panel concludes that maize MON 89034 x MON 88017 is nutritionally equivalent to conventional maize varieties. It is unlikely that the Cry1A.105, Cry2Ab2, Cry3Bb1 and CP4 EPSPS proteins will cause toxic or IgE-mediated allergic reactions to food or feed derived from maize MON 89034 x MON 88017 compared to conventional maize. Environmental Risk: Considering the intended uses of maize MON 89034 x MON 88017, excluding cultivation, the environmental risk assessment is concerned with accidental release into the environment of viable grains during transportation and processing, and indirect exposure, mainly through manure and faeces from animals fed grains from maize MON 89034 x MON 88017. Maize MON 89034 x MON 88017 has no altered survival, multiplication or dissemination characteristics, and there are no indications of an increased likelihood of spread and establishment of feral maize plants in the case of accidental release into the environment of seeds from maize MON 89034 x MON 88017. Maize is the only representative of the genus Zea in Europe, and there are no cross-compatible wild or weedy relatives outside cultivation. The VKM GMO Panel considers the risk of gene flow from occasional feral GM maize plants to conventional maize varieties to be negligible in Norway. Considering the intended use as food and feed, interactions with the biotic and abiotic environment are not considered by the GMO Panel to be an issue. Overall Conclusion: Based on current knowledge, the VKM GMO Panel concludes that maize MON 89034 x MON 88017 is compositionally, nutritionally, agronomically and phenotypically equivalent to its conventional counterpart except for the new proteins. It is unlikely that the Cry1A.105, Cry2Ab2, CryBb1 and CP4 EPSPS proteins will cause an increased risk of toxic or IgE-mediated allergic reactions to food or feed based on maize MON 89034 x MON 88017 compared to conventional maize varieties. The VKM GMO Panel concludes that maize MON 89034 x MON 88017, based on current knowledge, is comparable to conventional maize varieties concerning environmental risk in Norway with the intended usage.
ABSTRACT
In preparation for a legal implementation of EU-regulation 1829/2003, the Norwegian Scientific Committee for Food Safety (VKM) has been requested by the Norwegian Environment Agency and the Norwegian Food Safety Authority (NFSA) to conduct final food/feed and environmental risk assessments for all genetically modified organisms (GMOs) and products containing or consisting of GMOs that are authorized in the European Union under Directive 2001/18/EC or Regulation 1829/2003/EC. The request covers scope(s) relevant to the Gene Technology Act. The request does not cover GMOs that VKM already has conducted its final risk assessments on. However, the Agency and NFSA requests VKM to consider whether updates or other changes to earlier submitted assessments are necessary. The insect-resistant and glyphosate-tolerant genetically modified maize MON 88017 x MON 810 from Monsanto (Unique Identifier DAS-MON 88017-3 x MON-ØØ81Ø-6) was approved under Regulation (EC) No 1829/2003 in the EU for food and feed uses, import and processing on 28th of July 2010 (Commission Decision 2010/429/EC). Genetically modified maize MON 88017 x MON 810 has previously been risk assessed by the VKM Panel on Genetically Modified Organisms (GMO), commissioned by the Norwegian Food Safety Authority related to the EFSA public hearing of the application in 2007 (VKM 2007a). In addition, MON 88017 and MON 810 has been evaluated by the VKM GMO Panel as single events and as a component of several stacked GM maize events and Regulation (EC) 1829/2003 and Directive 2001/18/EC (VKM 2005a,b,c, VKM 2007b,c,d, VKM 2008, VKM 2009, VKM 2010 a,b,c, VKM 2012, VKM 2013, VKM 2016). The food/feed and environmental risk assessment of the maize MON 88017 x MON 810 is based on information provided by the applicant in the application EFSA/GMO/CZ/2006/33 and scientific comments from EFSA and other member states made available on the EFSA website GMO Extranet. The risk assessment also considered other peer-reviewed scientific literature as relevant. The VKM GMO Panel has evaluated MON 88017 x MON 810 with reference to its intended uses in the European Economic Area (EEA), and according to the principles described in the Norwegian Food Act, the Norwegian Gene Technology Act and regulations relating to impact assessment pursuant to the Gene Technology Act, Directive 2001/18/EC on the deliberate release into the environment of genetically modified organisms, and Regulation (EC) No 1829/2003 on genetically modified food and feed. The Norwegian Scientific Committee for Food Safety has also decided to take account of the appropriate principles described in the EFSA guidelines for the risk assessment of GM plants and derived food and feed (EFSA 2011a), the environmental risk assessment of GM plants (EFSA 2010), selection of comparators for the risk assessment of GM plants (EFSA 2011b) and for the post-market environmental monitoring of GM plants (EFSA 2011c). The scientific risk assessment of maize MON 88017 x MON 810 include molecular characterisation of the inserted DNA and expression of novel proteins, comparative assessment of agronomic and phenotypic characteristics, nutritional assessments, toxicology and allergenicity, unintended effects on plant fitness, potential for gene transfer, effects on biogeochemical processes and interactions between the GM plant and target and non-target organisms. It is emphasized that the VKM mandate does not include assessments of contribution to sustainable development, societal utility and ethical considerations, according to the Norwegian Gene Technology Act and Regulations relating to impact assessment pursuant to the Gene Technology Act. These considerations are therefore not part of the risk assessment provided by the VKM Panel on Genetically Modified Organisms. Likewise, the VKM mandate does not include evaluations of herbicide residues in food and feed from genetically modified plants. The hybrid maize MON 88017 x MON 810 was produced by conventional crosses between inbred lines containing MON 88017 and MON 810 events to combine resistance to certain coleopteran and lepidopteran pests, and to confer tolerance towards glyphosate-containing herbicides. Maize MON 88017 was developed to express a modified Cry3Bb1 insecticidal protein, derived from Bacillus thuringiensis subsp. kumamotoensis , which confers protection against coleopteran target pests belonging to the genus Diabrotica such as Western corn rootworm ( Diabrotica virgifera virgifera ). MON 88017 is also developed to provide tolerance to the herbicidal active substance glyphosate by the introduction of a gene coding for the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), from Agrobacteri um tumefaciens strain CP4 (CP4 EPSPS). Maize MON 810 expresses the Cry1Ab insecticidal protein, derived from Bacillus thuringiensis subsp. k u rstaki, which confers protection against lepidopteran pests such as Ostrinia nubilaris and species belonging to the genus Sesamia. Molecular characterisation Southern and PCR analyses indicate that the recombinant inserts in the single maize events MON 88017 and MON 810 are retained in the stacked event MON 88017 x MON 810. Genetic stability of the inserts has previously been demonstrated in the single events. The levels of CP4 EPSPS, Cry3Bb1 and Cry1Ab proteins in grain and forage from the stacked event are comparable to the levels in the corresponding single events. Phenotypic analyses also indicate stability of the insect resistance and herbicide tolerance traits of the stacked event. Based on current knowledge and the previous assessments of the parental maize events, the VKM GMO Panel considers the molecular characterisation of maize MON 88017 x MON 810 satisfactory. Comparative assessment The applicant has performed comparative analyses of data from field trials located at representative sites and environments in USA during the 2002 growing season. With the exception of small intermittent variations and the insect resistance and herbicide tolerance conferred by the CP4 EPSPS, Cry3Bb1 and Cry1Ab proteins, the results showed no biologically relevant differences between maize stack MON 88017 x MON 810 and its conventional counterpart. Based on the assessment of available data, the VKM GMO Panel concludes that maize MON 88017 x MON 810 is compositionally, agronomically and phenotypically equivalent to its conventional counterpart, except for the new proteins. Food and feed safety assessment A whole food feeding study on broilers indicates no adverse health effects of maize MON 88017 x MON 810, and shows that it is nutritionally equivalent to conventional maize varieties. The Cry3Bb1, Cry1Ab and CP4 EPSPS proteins do not show relevant sequence resemblance to other known toxins or IgE-allergens, nor have they been reported to cause IgE-mediated allergic reactions. However, some studies have indicated a potential role of Cry-proteins as adjuvants in allergic reactions. Based on current knowledge, the VKM GMO Panel concludes that maize MON 88017 x MON 810 is nutritionally equivalent to conventional maize varieties. It is unlikely that the Cry3Bb1, Cry1Ab and CP4 EPSPS proteins will cause toxic or IgE-mediated allergic reactions to food or feed based on maize MON 88017 x MON 810 compared to conventional maize. Environmental risk assessment Considering the intended uses of maize MON 88017 x MON 810, excluding cultivation, the environmental risk assessment is concerned with accidental release into the environment of viable grains during transportation and processing, and indirect exposure, mainly through manure and faeces from animals fed grains from maize MON 88017 x MON 810. Maize MON 88017 x MON 810 has no altered survival, multiplication or dissemination characteristics, and there are no indications of an increased likelihood of spread and establishment of feral maize plants in the case of accidental release into the environment of seeds from maize MON 88017 x MON 810. Maize is the only representative of the genus Zea in Europe, and there are no cross-compatible wild or weedy relatives outside cultivation. The VKM GMO Panel considers the risk of gene flow from occasional feral GM maize plants to conventional maize varieties to be negligible in Norway. Considering the intended use as food and feed, interactions with the biotic and abiotic environment are not considered by the GMO Panel to be an issue. Overall conclusion Based on current knowledge, the VKM GMO Panel concludes that maize MON 88017 x MON 810 is compositionally, nutritionally, agronomically and phenotypically equivalent to its conventional counterpart except for the new proteins. It is unlikely that the Cry3Bb1, Cry1Ab and CP4 EPSPS proteins will cause an increased risk of toxic or IgE-mediated allergic reactions to food or feed based on maize MON 88017 x MON 810 compared to conventional maize varieties. The VKM GMO Panel concludes that maize MON 88017 x MON 810, based on current knowledge, is comparable to conventional maize varieties concerning environmental risk in Norway with the intended usage.
ABSTRACT
In preparation for a legal implementation of regulation 1829/2003, the Norwegian Scientific Committee for Food Safety (VKM) has been requested by the Norwegian Environment Agency and the Norwegian Food Safety Authority (NFSA) to conduct final food/feed and environmental risk assessments for all genetically modified organisms (GMOs) and products containing or consisting of GMOs that are authorized in the European Union under Directive 2001/18/EC or Regulation 1829/2003/EC. The request covers scope(s) relevant to the Gene Technology Act. The request does not cover GMOs that VKM already has conducted its final risk assessments on. However, the Agency and NFSA requests VKM to consider whether updates or other changes to earlier submitted assessments are necessary. The insect-resistant and glyphosate-tolerant genetically modified maize MON 88017 from Monsanto (Unique Identifier DAS-MON 88017-7) was approved in the EU under Regulation (EC) No 1829/2003 for food and feed uses, import and processing the 30th of October 2009 (Commission Decision 2009/814/EC). Genetically modified maize MON 88017 has previously been risk assessed by the VKM Panel on Genetically Modified Organisms (GMO), commissioned by the Norwegian Food Safety Authority and the Norwegian Environment Agency related and to the EFSA public hearing of the applications EFSA/GMO/CZ/2005/27 and EFSA/GMO/CZ/2008/54 in 2007 and 2010 (VKM 2007a, 2010a). In addition, MON 88017 has been evaluated by the VKM GMO Panel as a component of several stacked GM maize events and Regulation (EC) 1829/2003 (VKM 2007b, VKM 2008, VKM 2009, VKM 2010b). The food/feed and environmental risk assessment of the maize MON 88017 is based on information provided by the applicant in the applications EFSA/GMO/UK/2005/27 and EFSA/CZ/2008/CZ/2008/54, and scientific comments from EFSA and other member states made available on the EFSA website GMO Extranet. The risk assessment also considered other peer-reviewed scientific literature as relevant. The VKM GMO Panel has evaluated MON 88017 with reference to its intended uses in the European Economic Area (EEA), and according to the principles described in the Norwegian Food Act, the Norwegian Gene Technology Act and regulations relating to impact assessment pursuant to the Gene Technology Act, Directive 2001/18/EC on the deliberate release into the environment of genetically modified organisms, and Regulation (EC) No 1829/2003 on genetically modified food and feed. The Norwegian Scientific Committee for Food Safety has also decided to take account of the appropriate principles described in the EFSA guidelines for the risk assessment of GM plants and derived food and feed (EFSA 2011a), the environmental risk assessment of GM plants (EFSA 2010a), selection of comparators for the risk assessment of GM plants (EFSA 2011b) and for the post-market environmental monitoring of GM plants (EFSA 2011c). 8.04.2016 The scientific risk assessment of maize MON 88017 include molecular characterisation of the inserted DNA and expression of novel proteins, comparative assessment of agronomic and phenotypic characteristics, nutritional assessments, toxicology and allergenicity, unintended effects on plant fitness, potential for gene transfer, interactions between the GM plant and target and non-target organisms, effects on biogeochemical processes. It is emphasised that the VKM mandate does not include assessments of contribution to sustainable development, societal utility and ethical considerations, according to the Norwegian Gene Technology Act and Regulations relating to impact assessment pursuant to the Gene Technology Act. These considerations are therefore not part of the risk assessment provided by the VKM Panel on Genetically Modified Organisms. Genetically modified maize MON 88017 expresses a Cry3Bb1 insecticidal protein, derived from Bacillus thuringiensis subsp. kumamotoensis, which confers protection against coleopteran target pests belonging to the genus Diabrotica such as Western corn rootworm (Diabrotica virgifera virgifera). MON 88017 is also developed to provide tolerance to the herbicidal active substance glyphosate by the introduction of a gene coding for the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), from Agrobacterium tumefaciens strain CP4 (CP4 EPSPS). Molecular characterisation The molecular characterisation data has established that only one copy of the transgene is integrated in the maize genomic DNA. Appropriate analyses of the integration site including sequence determination of the inserted DNA and flanking regions and bioinformatics analysis have been performed. Bioinformatics analyses of junction regions have demonstrated the absence of any potential new ORFs coding for known toxins or allergens. The genetic stability of transformation event MON 88017 was demonstrated at the genomic level over multiple generations by Southern analysis. Segregation analysis shows that event MON 88017 is inherited as a dominant, single locus trait. The VKM GMO Panel considers the molecular characterisation of maize MON 88017 satisfactory. Comparative assessment Comparative analyses of maize MON 88017 and its conventional counterpart have been performed during field trials located at representative sites and environments in Europe and USA. A total of 12-16 different conventional maize varieties were included in the field trials and used as references. With the exception the insect resistance and herbicide tolerance conferred by the Cry3Bb1 and CP4 EPSPS proteins, no biologically relevant differences were found between maize MON 88017 and controls. Based on the assessment of available data, the VKM GMO Panel concludes that maize MON 88017 is compositionally, agronomically and phenotypically equivalent to its conventional counterpart except for the new proteins. 8.04.2016 VKM Report 2016:12 Food and feed safety assessment Whole food feeding studies on rats and broilers indicate no adverse health effects of maize MON 88017. These studies also show that maize MON 88017 is nutritionally equivalent to conventional maize. The Cry3Bb1 and CP4 EPSPS proteins do not show relevant sequence resemblance to other known toxins or IgE-allergens, nor have they been reported to cause IgE-mediated allergic reactions. However, some studies have indicated a potential role of Cry-proteins as adjuvants in allergic reactions. Based on current knowledge, the VKM GMO Panel concludes that maize MON 88017 is nutritionally equivalent to conventional maize varieties. It is unlikely that the Cry3Bb1 and CP4 EPSPS proteins will cause toxic or IgE-mediated allergic reactions to food or feed based on maize MON 88017 compared to conventional maize. Environmental risk assessment Considering the intended uses of maize MON 88017, excluding cultivation, the environmental risk assessment is concerned with accidental release into the environment of viable grains during transportation and processing, and indirect exposure, mainly through manure and faeces from animals fed grains from maize MON 88017. Maize MON 88017 has no altered survival, multiplication or dissemination characteristics, and there are no indications of an increased likelihood of spread and establishment of feral maize plants in the case of accidental release into the environment of seeds from maize MON 88017. Maize is the only representative of the genus Zea in Europe, and there are no cross-compatible wild or weedy relatives outside cultivation. The VKM GMO Panel considers the risk of gene flow from occasional feral GM maize plants to conventional maize varieties to be negligible in Norway. Considering the intended use as food and feed, interactions with the biotic and abiotic environment are not considered by the GMO Panel to be an issue. 8.04.2016. VKM Report 2016:12 Overall conclusion Based on current knowledge, the VKM GMO Panel concludes that maize MON 88017 is compositionally, nutritionally, agronomically and phenotypically equivalent to its conventional counterpart except for the new proteins. It is unlikely that the Cry3Bb1 and CP4 EPSPS proteins will cause an increased risk of toxic or IgE-mediated allergic reactions to food or feed based on maize MON 88017 compared to conventional maize. The VKM GMO Panel concludes that maize MON 88017, based on current knowledge, is comparable to conventional maize varieties concerning environmental risk in Norway with the intended usage.
ABSTRACT
The Norwegian Environment Agency (NEA) and the Norwegian Food Safety Authority (NFSA) requested the Norwegian Scientific Committee for Food Safety (Vitenskapskomiteen for mattrygghet, VKM) for an opinion of potential risks to biodiversity and agriculture in Norway associated with import of seeds for sowing, and cultivation of insect-resistant and herbicide-tolerant genetically modified maize 1507 under Directive 2001/18/EC (Notification C/ES/01/01). The notification is still pending for authorisation in the European Union. VKM is also requested to assess the applicant´s post-market environmental monitoring plan, and the management measures suggested in the draft implementing decision of the European Commission. As VKM delivered a scientific opinion on this application including cultivation in 2014 (VKM, 2014), VKM is asked to assess whether the previous risk assessment is still valid concerning cultivation, and to update the opinion after current knowledge. The assessment shall specifically consider Norwegian conditions. Furthermore, as the notification does not cover food and feed uses of maize 1507, VKM was not asked for a health risk assessment of maize 1507. However, VKM has decided to update the previous safety evaluation of the food and feed uses of maize 1507 and derived products from 2014. VKM appointed a working group consisting of members from the Panel on Genetically Modified Organisms, the Panel on Alien Organisms and trade in Endangered Species (CITES) and the VKM staff to answer the requests. The Panel on Genetically Modified Organisms has assessed and approved the final report. The genetically modified maize 1507 was developed to provide protection against certain lepidopteran target pests, such as the European corn borer (ECB, Ostrinia nubilalis), and some species belonging to the genus Sesamia. The insect resistence is achieved by the expression of a synthetic version of the truncated c ry1F gene derived from Bacillus thuringiensis subsp. aizawai, a common soil bacterium. Maize 1507 also expresses the phosphinothricin - N - acetyltransferase (pat) gene, derived from the soil bacterium Streptomyces viridochromogenes. PAT protein confers tolerance to the herbicidal active substance glufosinate-ammonium. The PAT protein expressed in maize 1507 was used as a selectable marker to facilitate the selection process of transformed plant cells and is not intended for weed management purposes. Since the scope of the notification C/ES/01/01 does not cover the use of glufosinate-ammonium-containing herbicides on maize 1507, potential effects due to the use of such herbicides on maize 1507 are not considered by VKM. In delivering its scientific opinion, VKM considered relevant peer-reviewed scientific publications and information provided by the applicant in the notifications C/ES/01/01, C/NL/00/10, the applications EFSA/GMO/NL/2004/02 and EFSA/GMO/RX/1507, and scientific opinions and comments from EFSA and other EU member states. VKM has evaluated maize 1507 with reference to its intended uses in the European Economic Area (EEA), and according to the principles described in the Norwegian Food Act, the Norwegian Gene Technology Act and regulations relating to impact assessment pursuant to the Gene Technology Act, Directive 2001/18/EC on the deliberate release into the environment of genetically modified organisms, and Regulation (EC) No 1829/2003 on genetically modified food and feed. VKM has also decided to take into account, the appropriate principles described in the EFSA guidelines for the risk assessment of GM plants and derived food and feed (EFSA, 2011a), the environmental risk assessment of GM plants (EFSA, 2010a), selection of comparators for the risk assessment of GM plants (EFSA, 2011b) and for the post-market environmental monitoring of GM plants (EFSA, 2011c). The scientific opinion of maize 1507 include molecular characterisation of the inserted DNA and expression of novel proteins, comparative assessment of agronomic and phenotypic characteristics, nutritional assessments, toxicology and allergenicity. An evaluation of unintended effects on plant fitness, potential for gene transfer, interactions between the GM plant and target and non-target organisms, effects on biogeochemical processes, the postmarket environmental monitoring plan and coexistence measures at the farm level has also been undertaken. It is emphasised that VKM’s mandate does not include assessments of contribution to sustainable development, societal utility and ethical considerations, according to the Norwegian Gene Technology Act and Regulations relating to impact assessment pursuant to the Gene Technology Act. These considerations are therefore not part of the risk assessment provided by VKM. Molecular Characterization: Appropriate analyses of the transgenic DNA insert, its integration site, number of inserts and flanking sequences in the maize genome, have been performed. The results show that one copy only of the insert is present in maize 1507. Homology searches with databases of known toxins and allergens have not indicated any potential production of harmful proteins or polypeptides caused by the genetic modification in maize 1507. Southern blot analyses and segregation studies show that the introduced genes cry1F and pat are stably inherited and expressed over several generations along with the phenotypic characteristics of maize 1507. VKM considers the molecular characterisation of maize 1507 satisfactory. Comparative Assessment: Comparative analyses of maize 1507 to its non-GM conventional counterpart have been performed during multiple field trials located at representative sites and environments in Chile (1998/99), USA (1999) and in Europe (1999, 2000 and 2002). With the exception of small intermittent variations, no biologically significant differences were found between maize 1507 and the conventional maize. Based on the assessment of available data, VKM concludes that maize 1507 is compositionally, agronomically and phenotypically equivalent to its conventional counterpart, except for the introduced characteristics, and that its composition fell within the normal ranges of variation observed among non-GM varieties. The field evaluations support a conclusion of no phenotypic changes indicative of increased plant weed/pest potential of 1507 compared to conventional maize. Food and Feed Safety Assessment: Whole food feeding studies on rats, broilers, pullets, pigs and cattle have not indicated any adverse health effects of maize 1507. These studies further indicate that maize 1507 is nutritionally equivalent to conventional maize. The PAT and Cry1F proteins do not show sequence resemblance to other known toxins or IgE allergens, nor have they been reported to cause IgE mediated allergic reactions. Some studies have however, indicated a potential role of Cry-proteins as adjuvants in allergic reactions. Based on current knowledge, VKM concludes that maize 1507 is nutritionally equivalent to conventional maize varieties. It is unlikely that the PAT and Cry1F proteins will introduce a toxic or allergenic potential in food or feed based on maize 1507 compared to conventional maize. Environmental Risk Assessment: Maize is the only representative of the genus Zea in Europe, and there are no cross-compatible wild or weedy relatives outside cultivated maize with which maize can hybridise and form backcross progeny. Vertical gene transfer in maize therefore depends on cross-pollination with other conventional or organic maize varieties. In addition, unintended admixture of genetically modified material in seeds represents a possible way for gene flow between different crop cultivations. The risk of pollen flow from maize volunteers is negligible under Norwegian growing conditions. Since maize 1507 has no altered agronomic and phenotypic characteristics, except for the specific target insect resistance and herbicide tolerance, the likelihood of unintended environmental effects as a consequence of spread of genes from maize 1507 is considered to be extremely low. There are no reports of the target lepidopteran species attaining pest status on maize in Norway. Since there are no Bt-based insecticides approved for use in Norway, and lepidopteran pests have not been registered in maize, issues related to resistance evolution in target pests are not relevant at present for Norwegian agriculture. There are a limited number of published scientific studies on environmental effects of Cry1F protein. Published scientific studies show that the likelihood of negative effects of Cry1F protein on non-target arthropods that live on or in the vicinity of maize plants is low. In Norway, the maize cultivation is marginal. The total crop area of forage maize is estimated to 2000-2800 decares, equivalent to less than 0.1 % of the areas with cereal crops. The area of individual fields is limited by the topography such that the quantity of maize pollen produced under flowering is also limited. The potential exposure of Cry1F-containing maize pollen on non-target lepidopteran species in Norway is therefore negligible. Cultivation of maize 1507 is not considered to represent a threat to the prevalence of red-listed species in Norway. Exposure of non-target organisms to Cry proteins in aquatic ecosystems is likely to be very low, and potential exposure of Cry proteins to non-target organisms in aquatic ecosystems in Norway is considered to be negligible. VKM concludes that, although the data on the fate of the Cry1F protein and its potential interactions in soil are limited, the relevant scientific publications analysing the Cry1F protein, together with the relatively broad knowledge about the environmental fate of other Cry1 proteins, do not indicate significant direct effects on the soil environment. Despite limited number of studies, most studies conclude that effects on soil microorganisms and microbial communities are transient and minor c
ABSTRACT
La tolerancia a herbicidas es una de las características más usadas en los cultivos GM, con resultados positivos para los agricultores y el ambiente. El punto de partida, es el desarrollo de casetes de expresión que expresen la característica de interés, inicialmente construidos mediante técnicas de biología molecular convencionales. Actualmente, con herramientas de bioinformática y biología sintética, es posible diseñar y probar el constructo in silico, para luego contratar su síntesis. Esta aproximación, permite optimizar la expresión mediante la modificación del uso codónico. En este trabajo se diseñaron y evaluaron en Nicotiana benthamiana versiones semisintéticas de genes que confieren tolerancia al herbicida fosfinotricina. Se realizó un análisis de libertad de operación, con el fin de asegurar que los constructos diseñados no violen derechos de propiedad intelectual en Colombia. Se obtuvieron dos casetes de expresión con libertad de operación, que expresan versiones del gen bar.
Herbicide tolerance is one of the features most used in GM crops, which has shown positive results for farmers and the environment. The starting point is the development of expression cassettes that express the characteristic of interest, they are initially constructed by standard molecular biology techniques. Currently, by bioinformatics and synthetic biology tools, it is possible to design and test the construct in silico, and then hire their synthesis. This approach allows optimizing expression by modifying the codon usage. In this work there were designed and evaluated semi-synthetic versions of genes in Nicotiana benthamiana, these genes confer tolerance to the herbicide phosphinothricin. It was made an analysis of freedom to operate in order to ensure that the designed constructs not violate intellectual property in Colombia. There were obtained two expression cassettes with freedom to operate, which express versions of the bar gene.
ABSTRACT
Como primera aproximación en la obtención de una línea transgénica de maíz tolerante a sequía y al herbicida glufosinato de amonio, se seleccionaron genes y elementos reguladores para el diseño in silico de casetes de expresión, a través del análisis de literatura científica y bases de datos de genes y patentes. Las secuencias génicas fueron modificadas con base en el criterio de uso codónico del maíz para optimizar su expresión. Los casetes de expresión diseñados con el software DNA 2.0., fueron sintetizados por una empresa especializada. La presencia del transgen y la expresión a nivel de mARN fue demostrada mediante PCR y RT-PCR en la planta modelo Nicotiana benthamiana transformada vía Agrobacterium tumefaciens. Un ensayo preliminar in vitro en condiciones simuladas de sequía en medio MS con PEG (PM 6000)10 % no demostró incremento notorio en la tolerancia de las plántulas transformantes, posiblemente debido a que el uso codónico del diseño no favorece la expresión génica en la planta modelo.
As a first approach in obtaining a transgenic drought and glufosinate ammonium tolerant maize line, genes and regulatory elements for the in silico design of the expression cassettes were selected through analysis of scientific literature and databases of genes and patents. Gene sequences were modified based on the criterion of maize codon usage to optimize their expression. The constructs designed with DNA 2.0 Software, were synthesized by a specialized company. The presence of the transgene and the expression of mRNA was demonstrated by PCR and RT-PCR in the model plant Nicotiana benthamiana transformed via Agrobacterium tumefaciens. A preliminary experiment in vitro under simulated drought conditions in MS medium with 10 % PEG (PM 6000) showed no noticeable increase in drought tolerance of the transformants, possibly because the codon usage of the design does not promote gene expression in the model plant.
ABSTRACT
The effect of atrazine concentrations on mycelial growth and ligninolytic enzyme activities of eight native ligninolytic macrofungi isolated in Veracruz, México, were evaluated in a semi-solid culture medium. Inhibition of mycelial growth and growth rates were significantly affected (p = 0.05) by atrazine concentrations (468, 937, 1875, and 3750 mg/l). In accordance with the median effective concentration (EC50), Pleurotus sp. strain 1 proved to be the most tolerant isolate to atrazine (EC50 = 2281.0 mg/l), although its enzyme activity was not the highest. Pycnoporus sanguineus strain 2, Daedalea elegans and Trametes maxima showed high laccase activity (62.7, 31.9, 29.3 U mg/protein, respectively) without atrazine (control); however, this activity significantly increased (p < 0.05) (to 191.1, 83.5 and 120.6 U mg/protein, respectively) owing to the effect of atrazine (937 mg/l) in the culture medium. Pleurotus sp. strain 2 and Cymatoderma elegans significantly increased (p < 0.05) their manganese peroxidase (MnP) activities under atrazine stress at 468 mg/l. The isolates with high EC50 (Pleurotus sp. strain 1) and high enzymatic activity (P. sanguineus strain 2 and T. maxima) could be considered for future studies on atrazine mycodegradation. Furthermore, this study confirms that atrazine can increase laccase and MnP activities in ligninolytic macrofungi.
Se evaluó el efecto de diferentes concentraciones de atrazina sobre el crecimiento micelial y la actividad enzimática de ocho macrohongos ligninolíticos aislados en Veracruz, México. La inhibición del crecimiento micelial y la tasa de crecimiento diaria fueron significativamente (p < 0,05) afectadas por todas las dosis de atrazina (468, 937, 1875 y 3750 mg/l) adicionadas al medio de cultivo. De acuerdo con la concentración efectiva media (CE50), Pleurotus sp. cepa 1 fue el aislamiento más tolerante a la atrazina (CE50 = 2281 mg/l), aunque sus actividades enzimáticas no fueron altas. Pycnoporus sanguineus cepa 2, Daedalea elegans y Trametes maxima mostraron actividades altas de lacasa (62,7, 31,9 y 29,3 U mg/proteína, respectivamente) en ausencia de atrazina (control); estas actividades se incrementaron (p < 0,05) significativamente (191,1, 83,5 y 120,6 U mg/proteína, respectivamente) en presencia de atrazina (937 mg/l) en el medio de cultivo. Pleurotus sp. cepa 2 y Cymatoderma elegans incrementaron significativamente (p < 0,05) sus actividades de manganeso peroxidasa (MnP) bajo la concentración de 468 mg/l de atrazina. Los aislamientos con alta CE50 (Pleurotus sp. cepa 1) y alta actividad enzimática (P. sanguineus cepa 2 y T. maxima) podrían ser considerados para futuros estudios en la micodegradación de atrazina. Además, el presente estudio confirma que la atrazina puede incrementar las actividades lacasa y MnP en macrohongos ligninolíticos.
Subject(s)
Atrazine/pharmacology , Fungi/drug effects , Herbicides/pharmacology , Biological Assay , Dose-Response Relationship, Drug , Fungi/metabolism , Lignin/metabolismABSTRACT
En diciembre de 2008, se reportaron 125 millones de hectáreas de variedades transgénicas de soya, maíz, algodón y canola, sembradas en 23 países de los cinco continentes. Estas variedades fueron transformadas con genes de origen procariote, que les confieren la capacidad de resistir el ataque de insectos lepidópteros o tolerar dosis comerciales de herbicidas. Desde el inicio de la ingeniería genética, se ha planteado la pregunta de si estos organismos, liberados de manera masiva en los agroecosistemas, pueden causar efectos ambientales negativos en el mediano plazo, o efectos evolutivos desastrosos en el largo plazo. Una manera de analizar este problema, es considerar si pueden escapar a la selección natural darwinista, por el hecho de haberse introducido genes foráneos mediante manipulación humana. Para ello, se estudia la literatura disponible sobre el flujo de genes, desde los cultivos modificados hacía sus parientes silvestres estrechamente relacionados. Existe evidencia empírica de la hibridación entre materiales mejorados por métodos convencionales (hibridación, retrocruces, selección) o biotecnológicos (transferencia de genes foráneos) y parientes silvestres estrechamente relacionados. En todo caso, los efectos de estas hibridaciones dependen de la interacción entre el gen transferido y la planta silvestre pariente de la planta hospedera, en el ecosistema particular en que ocurra. El mayor efecto ambiental y evolutivo, es el resultado de la introgresión del transgen en el pariente silvestre, proceso que implica la estabilización del transgen en el genoma hospedero, resultado de sucesivas generaciones de hibridación y retrocruce. La introgresión depende más de la naturaleza del gen, y del lugar que ocupa en el genoma donante, que del mecanismo de introducción en dicho parental. No se han reportado efectos negativos sobre la diversidad genética de las especies transformadas, ni sobre el ambiente o los consumidores. En el contexto de la evidencia analizada, parecería que los cultivos transgénicos no escapan a la selección natural darwinista, sin embargo es muy temprano en términos evolutivos para llegar a una conclusión sobre este asunto.
In December 2008, 125 million hectares of transgenic varieties of soybean, corn, cotton and canola, were reported planted in 23 countries on five continents. These varieties were transformed with genes of prokaryote origin, rendering them resistant to lepidopteran insects attack or toleratant to commercial herbicides. Since the beginning of genetic engineering, the question whether mass release of these crops in agroecosystems, can cause either negative environmental effects in the medium term or evolutionary effects in the long term, has been raised. One way of analyzing this problem is to consider whether they can escape Darwinian natural selection, because foreign genes have been introduced through human manipulation. To this end, I study the available literature on gene flow from modified crops to their wild closely related relatives. There is empirical evidence of hybridization between improved materials, by both conventional methods (hybridization, backcross, selections) and biotechnological (transfer of foreign genes), and closely related wild relatives. In any case, the effects of these hybrids depend on the interaction between the transferred gene and the wild relative, the particular ecosystem in which it occurs. The biggest environmental and evolutionary impact is the result of introgression of a transgene in the wild relative, a process that involves stabilization of the transgene in the host genome, as a result of successive generations of hybridization and backcrossing. The introgression depends more upon the nature of the gene and its localization in the donnor s genome, than on the mechanism of introduction. No negative effects on the genetic diversity of species genetically modified, have been reported, neither on the environment or consummers. In the context of the evidence discussed, it appears s if genetic modified crops do not escape Darwinian natural selection, however it is very early in evolutionary terms to reach a conclusion on this matter.