ABSTRACT
SUMMARY: Overexpression of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in various tumor tissues and cell lines was found to promote tumor cell proliferation, migration, and invasion. However, the role of MALAT1 in gastric cancer (GC) is still unclear. We aimed to investigate the correlation between long-chain non-coding RNAs (lncRNAs), MALAT1, MicroRNAs (miRNA) and vascular endothelial growth factor A (VEGFA) in gastric cancer and to disclose underlying mechanism. The correlation between MALAT1 levels and clinical features was analyzed by bioinformatics data and human samples. The expression of MALAT1 was down regulated in AGS cells to detect the cell proliferation, migration, and invasion characteristics, as well as the effects on signal pathways. Furthermore, we validated the role of MALAT1/miR-330-3p axis in GC by dual luciferase reporter gene assays. Expression of MALAT1 was higher in cancer tissues than in para-cancerous tissues. The high MALAT1 level predicted malignancy and worse prognosis. Down-regulation of MALAT1 expression in AGS cells inhibited cell proliferation, migration, and invasion by targeting VEGFA. By dual luciferase reporter gene assay and miR-330-3p inhibitor treatment, we demonstrate that MALAT1 sponged miR-330-3p in GC, leading to VEGFA upregulation and activation of the mTOR signaling pathway. The MALAT1/miR-330-3p axis regulates VEGFA through the mTOR signaling pathway and promotes the growth and metastasis of gastric cancer.
Se descubrió que la sobreexpresión del transcrito 1 de adenocarcinoma de pulmón asociado a metástasis (MALAT1) en varios tejidos tumorales y líneas celulares promueve la proliferación, migración e invasión de células tumorales. Sin embargo, el papel de MALAT1 en el cáncer gástrico (CG) aún no está claro. Nuestro objetivo fue investigar la correlación entre los ARN no codificantes de cadena larga (lncRNA), MALAT1, los microARN (miARN) y el factor de crecimiento endotelial vascular A (VEGFA) en el cáncer gástrico y revelar el mecanismo subyacente. La correlación entre los niveles de MALAT1 y las características clínicas se analizó mediante datos bioinformáticos y muestras humanas. La expresión de MALAT1 se reguló negativamente en las células AGS para detectar las características de proliferación, migración e invasión celular, así como los efectos sobre las vías de señales. Además, validamos el papel del eje MALAT1/miR- 330-3p en GC mediante ensayos de genes indicadores de luciferasa dual. La expresión de MALAT1 fue mayor en tejidos cancerosos que en tejidos paracancerosos. El alto nivel de MALAT1 predijo malignidad y peor pronóstico. La regulación negativa de la expresión de MALAT1 en células AGS inhibió la proliferación, migración e invasión celular al apuntar a VEGFA. Mediante un ensayo de gen indicador de luciferasa dual y un tratamiento con inhibidor de miR-330-3p, demostramos que MALAT1 esponjaba miR-330-3p en GC, lo que lleva a la regulación positiva de VEGFA y la activación de la vía de señalización mTOR. El eje MALAT1/miR-330-3p regula VEGFA a través de la vía de señalización mTOR y promueve el crecimiento y la metástasis del cáncer gástrico.
Subject(s)
Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Vascular Endothelial Growth Factor A , TOR Serine-Threonine Kinases , RNA, Long Noncoding , RNA/genetics , Signal Transduction , Gene Expression Regulation, Neoplastic , Cell Movement , Blotting, Western , Apoptosis , Genes, Reporter , Cell Proliferation , Real-Time Polymerase Chain Reaction , Neoplasm InvasivenessABSTRACT
Objectives:To investigate the effect of inhibition of long non-coding RNA(lnc RNA)in human metastasis associated lung adenocarcinoma transcript 1(MALAT1)on glycolipitoxicity-induced human umbilical vein endothelial cell dysfunction. Methods:Human umbilical vein endothelial cells were treated with glucose and palmitic acid in vitro to establish the glycolipitoxic endothelial cell models.Following groups were examined:control group,high-glucose and high-fat group,high-glucose and high-fat + non-targeting RAN control group,high-glucose and high-lipid+MALAT1 siRNA group,and high-glucose and high-lipid+MAPK1 siRNA group.RT-qPCR was used to detect the mRNA expression of MALAT1 and MAPK1.Western blot was used to detect the expression levels of autophagy,mitochondrial fusion division,apoptosis,and pathway-related proteins.Immunofluorescence confocal localization was used to detect the fluorescence colocalization of autophagy and lysosome-related proteins.The number of autophagolysosomes in endothelial cells was observed by transmission electron microscopy.Mitochondrial probe staining was used to detect mitochondrial morphology,immunofluorescence was used to detect intracellular reactive oxygen species(ROS)production,flow cytometry was used to detect the apoptosis of cells in each group,cell proliferation and scratch assays were used to detect the proliferation and migration ability of cells in different groups at different time points.The angiogenesis was quantified by counting the number of new blood vessels in each group. Results:Compared with the control group,the expression of lncRNA MALAT1 mRNA and the expression of phosphorylated mito-activated protein kinase 1(p-MAPK1)were upregulated(both P<0.05)and the expression of phosphorylated mammalian target protein(p-mTOR)was downregulated in the high-glucose and high-fat group and the high-sugar and high-fat control group(all P<0.01).Compared with the high-glucose and high-fat non-targeting RNA control group,the expressions of microtubule-associated protein 1A/1B-light chain 3(LC3)and p62 were downregulated(P<0.01,P<0.05),LC3 and lysosome-associated membrane protein 2(LAMP2)protein co-localized positive fluorescence particles were increased(both P<0.01),number of lysosomes were decreased,the expression of ROS was decreased(P<0.01),the expression level of mitochondrial fusion protein optic nerve atrophin 1(OPA1)was increased(P<0.05),the expressions of cleaved caspase-3 and BCL-2-related X protein(BAX)were decreased and BCL-2 was increased(all P<0.05),cell proliferation,migration,and tube-forming ability were increased(all P<0.01),and the expression of p-MAPK1 was decreased(P<0.05)and p-mTOR expression was increased(both P<0.05)in the high-glucose and high-lipid+si-MALAT1 group.Compared with the high-glucose and high-fat non-targeting RNA control group,the expression of p-MAPK1 in endothelial cells was decreased and the expression of p-mTOR was increased in the high-glucose and high-lipid+si-MAPK1 group(both P<0.01). Conclusions:Inhibition of lncRNA MALAT1 expression can reduce the level of mitophagy in glycolipidotoxic environments,reduce apoptosis of endothelial cells and improve endothelial cell function,which may be related to the regulation of MAPK1/mTOR signaling pathway.
ABSTRACT
Objective To study the mechanism of Yangjing Zhongyu Decoction in regulating the initiation of primordial follicles in model rats with diminished ovarian reserve(DOR)based on lncRNA.Methods Three-day-old female rats were selected and their ovaries were cultured in vitro.The blank group,model group,DHEA group and Yangjing Zhongyu Decoction high-,medium-and low-dosage groups were set.The DOR model was induced by triptolide,corresponding drug containing serum was given to culture respectively.HE staining was used to observe germ cells and follicles,Western blot was used for determining the expressions of AMH,BMP15,PTEN,MST,TGF-β1,p-Smad1 protein,RT-PCR was used to detected AMH,BMP15,PTEN,MST,LTCONS-00011173,TGF-β1,Smad1 mRNA expression.Results Compared with the blank group,the number of primordial and growing follicles in the model group rats decreased(P<0.05),the expression of AMH,BMP15,TGF-β1,p-Smad1 protein in ovarian tissue decreased(P<0.05),expressions of PTEN and MST proteins increased(P<0.05),AMH,BMP15,TGF-β1,Smad1 mRNA expression decreased(P<0.05),while the expressions of PTEN,MST,and LTCONS-00011173 mRNA increased(P<0.05).Compared with the model group,the DHEA group and Yangjing Zhongyu Decoction high-and medium-dosage groups showed an increase in the number of primordial and growing follicles(P<0.05),the expressions of AMH,BMP15,TGF-β1 and p-Smad1 protein in ovarian tissue increased(P<0.05),PTEN and MST protein expressions decreased(P<0.05),AMH,BMP15,TGF-β1,Smad1 mRNA expressions increased(P<0.05),while PTEN,MST,and LTCONS-00011173 mRNA expressions decreased(P<0.05).Conclusion Yangjing Zhongyu Decoction may mediate TGF-β1/Smad1 signaling pathway through LTCONS-00011173,regulating primordial follicle initiation in DOR model rats.
ABSTRACT
Objective:To investigate the role and mechanism of long non-coding RNA (lncRNA) gastric cancer associated transcript 3 (GACAT3) in glioma radioresistance.Methods:Real-time reverse transcription PCR (RT-qPCR) was used to detect the expression of lncRNA GACAT3 and miR-497 in human astrocyte NHA cells and glioma cells U251. NC-siRNA and GACAT3-siRNA were transfected into U251 cells, and the cells were treated with X-ray irradiation. Colony formation assay was used to detect the survival fraction of U251 cells. The apoptosis of U251 cells was detected by flow cytometry. Western blot was used to detect the expression of cysteine containing aspartate specific protease 3 (Caspase-3) in U251 cells. Bioinformatics software and dual luciferase reporter gene assay were used to predict and verify the targeting relationship between lncRNA GACAT3 and miR-497, and between miR-497 and Yes-associated protein 1 (YAP1), respectively. NC mimic, miR-497 mimic, GACAT3-siRNA and NC inhibitor, GACAT3-siRNA and miR-497 inhibitor were co-transfected into U251 cells. Colony formation assay, flow cytometry and Western blot were adopted to evaluate the effect of miR-497 overexpression and lncRNA GACAT3 on the radiosensitivity of U251 cells by regulating miR-497.Results:Compared with NHA cells, the expression of lncRNA GACAT3 in U251 cells was significantly up-regulated, and the expression of miR-497 in U251 cells was significantly down-regulated (both P<0.05). After knockdown of GACAT3, the survival fraction of irradiated U251 cells was significantly decreased, while the apoptosis rate and Caspase-3 protein expression were significantly increased (all P<0.05). lncRNA GACAT3 targeted and negatively regulated the expression of miR-497. Overexpression of miR-497 significantly reduced the survival fraction of U251 cells after irradiation, and increased the apoptosis rate and Caspase-3 protein expression. Inhibition of miR-497 significantly reversed the promoting effect of lncRNA GACAT3 knockdown on the radiosensitivity of U251 cells. miR-497 targeted and negatively regulated the expression of YAP1. Conclusion:Knockdown of lncRNA GACAT3 can enhance the radiosensitivity of glioma cells by regulating the miR-497/YAP1 axis.
ABSTRACT
AIM: To detect the expression levels of long non-coding RNA(lncRNA)X-inactive specific transcript(XIST)and silencing information regulatory factor 2 associated enzyme 1(SIRT1)in serum of patients with type 2 diabetes mellitus(T2DM), and to explore their correlation with diabetic retinopathy(DR)and their diagnostic value. METHODS: Prospective study. A total of 214 patients with T2DM admitted to our hospital from January 2022 to February 2023 were selected as the research subjects. Based on whether retinopathy occurred, they were divided into 126 cases(126 eyes)in the non-DR group and 88 cases(88 eyes)in the DR group. An additional 130 healthy individuals who underwent a physical examination during the same period were selected as the control group. The serum levels of lncRNA XIST and SIRT1 in the three groups were measured and compared. The relationship between lncRNA XIST and SIRT1 expression with DR was analyzed using Pearson's method. The receiver operating characteristic(ROC)curve was used to evaluate the predictive value of serum lncRNA XIST, SIRT1, and their combination for DR. Multivariate Logistic regression analysis was performed to investigate the factors affecting the occurrence of DR in T2DM patients.RESULTS: Compared with the control group, the levels of serum lncRNA XIST and SIRT1 in the non-DR group and DR group were successively decreased(all P<0.05). The levels of serum lncRNA XIST and SIRT1 were positively correlated in DR patients(r=0.639, P<0.05). ROC analysis showed that the area under the curve(AUC)for predicting DR by combining serum lncRNA XIST and SIRT1 was 0.940, which was higher than the AUC by serum lncRNA XIST and SIRT1 alone(0.855, 0.875). Logistic regression analysis showed that lncRNA XIST(OR=0.752)and SIRT1(OR=0.694)were influencing factors for the occurrence of DR(both P<0.01).CONCLUSION: The serum levels of lncRNA XIST and SIRT1 are both lower in DR patients, and the combination of lncRNA XIST and SIRT1 has a better assessment capacity for the occurrence of DR.
ABSTRACT
ObjectiveTranscription factor NFE2 was observed abnormal expression in myeloproliferative neoplasm (MPN) patients. However, how NFE2 is transcriptionally regulated remains ambiguous. This study aims to explore the elements and molecular mechanisms involved in the transcriptional regulation of NFE2. MethodsActive enhancers were predicted by public NGS data and conformed experimentally via dual luciferase reporter assay. After that, PRO-seq and GRO-seq data was used to detect enhancer RNAs transcribed from these enhancers. RACE was utilized to clone the full length enhancer RNA (eRNA) transcripts, and RT-qPCR was used to measure their expression in different leukemia cell lines as well as the transcript levels during induced differentiation. Finally, to investigate the molecular function of the eRNA, overexpression and knockdown of the eRNA via lentivirus system was performed in K562 cells. ResultsWe identified three enhancers regulating NFE2 transcription, which located at -3.6k, -6.2k and +6.3k from NFE2 transcription start site (TSS) respectively. At the -3.6k enhancer, we cloned an eRNA transcript and characterized that as a lncRNA which was expressed and located in the nucleus in three types of leukemia cell lines. When this lncRNA was overexpressed, expression of NFE2 was upregulated and decreases of K562 cell proliferation and migration ability were observed. While knocking down of this lncRNA, the level of NFE2 decreases correspondingly and the proliferation ability of K562 cells increases accordingly. ConclusionWe identified an enhancer lncRNA that regulates NFE2 transcription positively and suppresses K562 cell proliferation.
ABSTRACT
Abstract Background Rheumatoid arthritis (RA) is a chronic autoimmune disease that may cause joint deformities and seriously affect the normal life of the patients. In order to enable patients to receive timely attention and treatment, this study developed new diagnostic markers by exploring the expression and molecular mechanism of the long non-coding RNA NORAD (NORAD) in RA. Methods Participants including 77 RA patients and 52 healthy persons were enrolled, and the corresponding clinical data and serum samples were obtained. The NORAD and miR-204-5p expression were detected by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR). The content of inflammatory cytokines (IL-6, TNF-α) were determined through enzyme-linked immunosorbent assay (ELISA). Luciferase activity reporter assay demonstrated the association between NORAD and miR-204-5p. In addition, receiver operating characteristic (ROC) curve was used to evaluate the diagnostic efficacy of NORAD, and Pearson's correlation analysis was applied for the correlation analysis. Results NORAD was enriched in RA serum with high diagnostic value. Simultaneously, IL-6 and TNF-α levels were also upregulated (P < 0.001). The C-reactive protein (CRP), rheumatoid factor (RF), erythrocyte sedimentation rate (ESR) and anti-cyclic citrullinated peptide antibody (Anti-CCP) levels in RA patients were generally elevated (P < 0.001). NORAD was positively correlated with the levels of clinical indicators and inflammatory factors (P < 0.0001). Mechanistically, NORAD may affect the progression of RA by targeting and negatively regulating miR-204-5p. Conclusions There is a correlation between NORAD and the processes of RA, and NORAD has the potential to predict and diagnose the occurrence of RA.
ABSTRACT
ABSTRACT Objective: This study sought to investigate the regulation of long noncoding RNA (lncRNA) XIST on the microRNA (miR)-101-3p/vascular endothelial growth factor A (VEGFA) axis in neovascularization in diabetic retinopathy (DR). Materials and methods: Serum of patients with DR was extracted for the analysis of XIST, miR-101-3p, and VEGFA expression levels. High glucose (HG)-insulted HRMECs and DR model rats were treated with lentiviral vectors. MTT, transwell, and tube formation assays were performed to evaluate cell viability, migration, and angiogenesis, and ELISA was conducted to detect the levels of inflammatory cytokines. Dual-luciferase reporter, RIP, and RNA pull-down experiments were used to validate the relationships among XIST, miR-101-3p, and VEGFA. Results: XIST and VEGFA were upregulated and miR-101-3p was downregulated in serum from patients with DR. XIST knockdown inhibited proliferation, migration, vessel tube formation, and inflammatory response in HG-treated HRMECs, whereas the above effects were nullified by miR-101-3p inhibition or VEGFA overexpression. miR-101-3p could bind to XIST and VEGFA. XIST promoted DR development in rats by regulating the miR-101-3p/VEGFA axis. Conclusions: LncRNA XIST promotes VEGFA expression by downregulating miR-101-3p, thereby stimulating angiogenesis and inflammatory response in DR.
ABSTRACT
SUMMARY OBJECTIVE: Various studies have reported that certain long non-coding RNA levels are unusually low in the intestines of celiac disease patients, suggesting that this may be associated with the inflammation observed in celiac disease. Despite these studies, the research aimed at uncovering the potential role of long non-coding RNAs in the pathogenesis of autoimmune diseases like celiac disease remains insufficient. Therefore, in this study, we plan to assess long non-coding RNA polymorphisms associated with autoimmunity in children diagnosed with celiac disease according to the European Society for Paediatric Gastroenterology Hepatology and Nutrition criteria. METHODS: DNA was isolated from paraffin tissue samples of 88 pediatric celiac disease patients and 74 healthy pediatric individuals. Single-nucleotide polymorphism genotyping of five long non-coding RNA polymorphisms associated with autoimmunity (LINC01934-rs1018326, IL18RAP-rs917997, AP002954.4-rs10892258, UQCRC2P1-rs6441961, and HCG14 rs3135316) was conducted using the TaqMan single-nucleotide polymorphism genotyping assays with the LightCycler 480. RESULTS: In our study, the genotypic and allelic frequency distribution of LINC01934-rs1018326 and AP002954.4-rs10892258 polymorphisms was found to be statistically significant in the comparison between the two groups (p<0.05). According to the multiple genetic model analyses, the LINC01934-rs1018326 polymorphism was observed to confer a 1.14-fold risk in the recessive model and a 1.2-fold risk in the additive model for pediatric celiac disease. Similarly, the AP002954.4-rs10892258 polymorphism was found to pose a 1.40-fold risk in the dominant model and a 1.7-fold risk in the additive model. CONCLUSION: Our study results draw attention to the LINC01934-rs1018326 and AP002954.4-rs10892258 polymorphisms in celiac disease and suggest that these polymorphisms may be associated with inflammation in autoimmune diseases like celiac disease.
ABSTRACT
Objective:To investigate whether long non-coding RNA(lncRNA) AW112010 can improve insulin resistance in aging adipocytes through the miR-204/POU2F2 signaling pathway.Methods:In vivo experiment: C57BL/6 mice were divided into young control group(4 months old) and aging model group(18 months old) based on body weight. The expression levels of AW112010, miR-204-5p, POU2F2, aging related indicators(p16, p21), and insulin signaling pathway genes [insulin receptor(INSR), insulin receptor substrate 1(IRS1), phosphatidylinositol kinase(PI3K), protein kinase B(AKT)] in epididymal adipose tissue were detected using real-time fluorescence quantitative PCR(RT-qPCR) and Western blotting. In vitro experiment: Using adriamycin(ADR) to induce 3T3-L1 aging adipocyte model, β-gal staining was used to observe cellular senescence, and miR-204 inhibitor and miR-204 mimic small interfering RNA were successfully constructed and transfected into 3T3-L1 adipocytes. Results:RT-qPCR and Western blot results showed that compared with the young group, the expression of AW112010 in the adipose tissue of aging mice was increased, while the expression of miR-204-5p was decreased. The expressions of POU2F2, p16, and p21 in the adipose tissue of aging mice were increased, while the expressions of INSR, IRS1, PI3K, GLUT4 mRNA and protein were decreased. The β-gal stainging results showed that the number of 3T3-L1 senescent adipocytes induced by ADR was significantly increased, and the expression levels of AW112010, POU2F2, p16, and p21 in ADR-induced senescent adipocytes were increased compared with the control group, while the expression levels of miR-204-5p, INSR, IRS1, PI3K, GLUT4 were decreased, and remaining glucose in the culture medium was increased. Compared with control, overexpression of miR-204 resulted in decreased expressions of aging indicators p16, p21, and target gene POU2F2 while the expressions of INSR and GLUT4 were increased.Conclusion:Upregulation of lncRNA AW112010 in adipocytes of aging mice may induce insulin resistance by targeting miR-204-5p/POU2F2/IRS1.
ABSTRACT
@#Objective To analyze the expression profiles of long non-coding RNAs(lncRNA)in hippocampus of alcoholdependent mice induced by double-bottle selective drinking.Methods The alcohol-dependent mouse model was established by double-bottle selective drinking method,and the control group was set up(drinking water). Three male mice with alcohol preference more than 60% and alcohol consumption more than 10 g/(kg·24 h)in alcohol group and random three male mice in control group were selected,of which bilateral hippocampal brain tissues were isolated and stored in liquid nitrogen. LncRNA and mRNA of mouse hippocampal brain tissue RNA samples were sequenced by using Agilent-084388 microarray,and the differential expression of lncRNA in samples was detected by using ncRNA microarray. The biological processes and signaling pathways involved in differential expression of lncRNA were clustered and enriched by Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)analysis. Pearson correlation analysis was used to predict the coding genes co-expressed by each differentially expressed lncRNA. Hypergeometric distribution test was used to calculate the significance of differential gene enrichment in each corresponding transcription factor item,and Cytoscape software was used to draw a visual network diagram.Results Compared with the control group,totally 855 lncRNAs(FC ≥ 2. 0,P < 0. 05)were differentially expressed in the hippocampus of mice in alcohol group,of which 337 lncRNAs were up-regulated significantly,with NONMMUT025786.2 and NONMMUT072246.2 being the most up-regulated,and 518 significant downward adjustments were observed,with the largest downward adjustments being NONMMUT113098.1 and NONMMUT076455.1. There were 361 mRNAs differentially expressed in the two groups(FC ≥ 2. 0,P < 0. 05)with 271 mRNAs up-regulated significantly and 90 significant downward adjustments,among which,the most obvious up-regulated were Upf3b and Zfp943,and Adamts 13 and Ift 27 showed the largest downward adjustments. The differential expression of lncRNAs was most obvious in the positive regulation of cell surface,GTPase activity and cell vesicle transport;The main signaling pathways involved were propanoate metabolism,taurine metabolism,extracellular matrix receptor interaction and AMPK signaling pathway. The most abundant transcription factors were FOXL1 and LHX3,with 25 and 21 corresponding co-expressed genes,respectively.Conclusion Through high-throughput gene expression profile microarray analysis,the possible key regulatory sites of lncRNAs and mRNAs were obtained,which provided experimental basis for research of the molecular mechanism of alcohol dependence in the hippocampus.
ABSTRACT
Objective To explore the biological function and downstream mechanism of ETS1 in glioma. Methods Bioinformatics and immunohistochemistry were used to analyze the differential expression characteristics of ETS1 in gliomas; qRT-PCR was employed to detect the expression level of ETS1 mRNA and lncRNA X-inactive specific transcript (XIST). CCK-8 and 5-ethyl-2′-deoxyuridine experiments were conducted to detect cell growth. Western blot was used to detect the expression of apoptosis-related proteins (Bax, Bak, Bcl-2). PROMO database was utilized to predict the binding sites between ETS1 and XIST promoter. Dual-luciferase reporter gene assay and chromatin immunoprecipitation-quantitative polymerase chain reaction assays were performed to verify the binding relationship between ETS1 and the XIST promoter region. cBioPortal database was used to analyze the correlation between the expression of ETS1 mRNA and XIST in glioma tissues. Results The expression levels of ETS1 mRNA and protein were significantly upregulated in glioma (P<0.05). The depletion of ETS1 significantly inhibited the proliferation of glioma cells and promoted cell apoptosis (P<0.05). ETS1 could target and bind with the XIST promoter and promote the expression of XIST (P<0.05). The overexpression of XIST reversed the effects of ETS1 on the proliferation of glioma cells and the promotion of cell apoptosis (P<0.05). Conclusion ETS1 is highly expressed in glioma tissues. It could promote the expression of lncRNA XIST, boost the proliferation of glioma cells, and inhibit cell apoptosis.
ABSTRACT
【Objective】 To analyze the expression of lncRNA SNHG25 in prostate cancer and its significance, so as to explore the biomarkers and potential therapeutic targets for the diagnosis and prognosis of this disease. 【Methods】 Based on the TCGA database, differential, survival, and clinical correlation analyses of SNHG25 were performed.SNHG25 expression in prostate cancer was analyzed in the UALCAN database to determine its relationship with the clinical and pathological characteristics.The lncRNA-miRNA-mRNA correlation analysis was performed.The relevant ceRNA regulatory network was constructed.Prostate cancer samples were divided into high and low SNHG25 expression groups, and differential SNHG25 related genes were filtered and then enriched. 【Results】 SNHG25 expression was significantly upregulated in prostate cancer specimens compared to normal prostate specimens (P0.05).Regulatory networks of SNHG25/miR-330-3p/DLX1 and RPL22L1 were constructed. 【Conclusion】 SNHG25 is highly expressed in prostate cancer tissues and correlated with poor prognosis.SNHG25 expression does not significantly correlate with age, T-stage, N-stage, and Gleason score.SNHG25/miR-330-3p/DLX1 and RPL22L1 regulatory networks may play an important role in the development of prostate cancer.SNHG25 may become a biomarker and potential therapeutic target for prostate cancer.
ABSTRACT
【Objective】 To explore the expression and clinical significance of prostate cancer tissue-specific lncRNAs. 【Methods】 The gene differences of 492 prostate cancer tissues and 152 adjacent tissues in TCGA and GEO genomic databases were analyzed with bioinformatics methods. A total of 5 lncRNAs were screened out, and their specificity in prostate tissues and impact on the prognosis of patients were analyzed. 【Results】 The 5 lncRNAs included PCAT14, PCA3, CTBP1-AS, DRAIC, and GPC5-AS1. PCAT14 and PCA3 were specifically expressed in prostate cancer tissues, and elevated expression was related to the prognosis. Moreover, they were well correlated with prostate cancer-specific antigens such as KLK3, AMACR, SLC45A3, and so on. GO function enrichment analysis and KEGG pathway enrichment analysis showed that the differential expression of PCA3 was closely related to phagocytosis, cell recognition, defense response to bacteria, immunoglobulin complex, Golgi apparatus, antigen binding, chemokine receptor binding, white matter digestion and absorption, renin-angiotensin system and other signaling pathways, while the differential expression of PCAT14 was closely related to the activity of Golgi apparatus and ion channels, renin secretion, cAMP signaling pathway, and gonadotropin secretion-related signaling pathway. 【Conclusion】 PCA3 and PCAT14 are specifically expressed in prostate cancer tissues, not in normal tissues, which can be used as potential indicators for the diagnosis of prostate cancer.
ABSTRACT
@#目的:筛选果蝇Zeste基因增强子同源物2(EZH2)基因上游miRNA及lncRNA,分析其在胃癌细胞中的表达并验证其间的靶向关系,探讨它们对胃癌细胞增殖、迁移和凋亡的影响。方法:通过ENCORI、miRDB和Target Scan数据库查询并分析、筛选EZH2上游miRNA(has-miR-450b-5p),ENCORI数据库和DAINA数据库筛选has-miR-450b-5p上游lncRNA(lncRNA NEAT1),预测hsa-miR-450b-5p、lncRNA NEAT1与EZH2之间的结合位点,双荧光素酶报告基因实验验证hsa-miR-450b-5p与lncRNA NEAT1的结合关系。采用qPCR和WB法检测lncRNA NEAT1和EZH2在正常胃黏膜细胞(GES-1)与胃癌细胞(MGC-803、SGC-7901和MKN-28)中的表达量。按转染物的不同将MGC-803和SGC-7901细胞分为hsa-miR-450b-5p-mimic组、mimic-NC组、si-NEAT1组和si-NC组,转染36~48 h后qPCR法验证过表达及敲减效果;通过qPCR、WB法检测观察过表达hsa-miR-450b-5p对细胞中lncRNA NEAT1和EZH2 mRNA、蛋白表达的影响,以及敲减lncRNA NEAT1对hsa-miR-450b-5p和EZH2 mRNA表达的影响;CCK-8法、划痕愈合实验和流式细胞术分别检测敲减EZH2或敲减lncRNA NEAT1对细胞增殖、迁移和凋亡能力的影响。结果:生物信息学分析筛选获得EZH2上游miRNA和lncRNA为has-miR-450b-5p和lncRNA NEAT1,双荧光素酶报告基因实验验证了两者间存在靶向关系。lncRNA NEAT1和EZH2 mRNA、蛋白在胃癌细胞中均呈高表达(均P<0.05)。与mimic-NC组相比,hsa-miR-450b-5p-mimic组MGC-803、SGC-7901细胞中miR-450b-5p水平均显著升高,而EZH2 mRNA、蛋白和lncRNA NEAT1的表达量均显著降低(P<0.05或P<0.01);与si-NC组相比,si-NEAT1组MGC-803、SGC-7901细胞中lncRNA NEAT1和EZH2 mRNA的表达量均显著降低(均P<0.01),SGC-7901细胞中hsa-miR-450b-5p表达量显著升高(P<0.05)。敲减EZH2或敲减lncRNA NEAT1后,MGC-803、SGC-7901细胞的增殖、迁移能力均显著降低(均P<0.01)。结论:lncRNA NEAT1 和EZH2在胃癌细胞中均呈高表达,lncRNA NEAT1可通过hsa-miR-450b-5p促进EZH2的表达并提高胃癌MGC-803和SGC-7901细胞的增殖和迁移能力。
ABSTRACT
ObjectiveTo investigate the mechanism of Biejiajian Wan in the intervention of primary liver cancer based on long non-coding RNA SNHG5 (lncRNA SNHG5)/micro RNA-26a-5p (miRNA-26a-5p)/glycogen synthase kinase-3β (GSK-3β) signal axis. MethodDouble luciferase reporting assay was used to verify the targeted interaction between lncRNA SNHG5 and miRNA-26a-5p, miRNA-26a-5p, and GSK-3β in HepG2 cells. Nude-mouse transplanted tumor model of human HepG2 were established and randomly divided into model group, Biejiajian Wan low-dose group (0.5 g·kg-1), medium-dose group (1.0 g·kg-1), and high-dose group (2.0 g·kg-1), and sorafenib group (100 mg·kg-1), with 10 mice in each group. The mice were given intragastric administration of normal saline or drug for 28 days, and the tumor volume was measured at different time. Hematoxylin-eosin (HE) staining was used to observe the histological changes of tumors. The nucleic acid levels of lncRNA SNHG5, miRNA-26a-5p, GSK-3β, and β-catenin mPNA in tumor tissue were detected by real-time quantitative polymerase chain reaction (Real-time PCR). The protein expression levels of GSK-3β and β-catenin in tumor tissue were detected by western blot. ResultCompared with the SNHG5-WT (wild type) + miRNA NC (negative control) group, the relative luciferase activities of the SNHG5-WT + miRNA-26a-5p mimic group were decreased (P<0.05). Compared with the GSK-3β-WT + miRNA NC group, the relative luciferase activity of the GSK-3β-WT + miRNA-26a-5p mimic group was decreased (P<0.05). Compared with the model group, the tumor volume of Biejiajian Wan low-dose, medium-dose, and high-dose groups was significantly decreased (P<0.05, P<0.01). Compared with the model group, the cells in the tumor tissue of nude mice in each dose group of Biejiajian Wan were sparsely arranged with necrocytosis, which showed concentration-dependent changes. Compared with the model group, the expression levels of lncRNA SNHG5, GSK-3β, and β-catenin were decreased (P<0.05, P<0.01), while the expression of miRNA-26a-5p was increased in each dose group of Biejiajian Wan (P<0.05, P<0.01). Compared with the model group, the protein expression levels of GSK-3β and β-catenin were decreased in each dose group of Biejiajian Wan (P<0.05, P<0.01). ConclusionBiejiajian Wan may affect the necrosis of liver cancer cells through lncRNA SNHG5/miRNA-26a-5p/GSK-3β signal axis and thus play an anti-tumor role. This research will provide more theoretical basis for the clinical application of Biejiajian Wan.
ABSTRACT
Objective To explore the prognostic value and immune infiltration landscape of anoikis-related long noncoding RNAs (arlncRNAs) in lung adenocarcinoma. Methods RNA-seq and clinical data of lung adenocarcinoma were downloaded from the TCGA database, and anoikis-related genes were obtained from the GeneCards and Harmonizome databases. Coexpression, differential, and WGCNA analyses were performed to screen differentially expressed arlncRNAs closely related to the occurrence of lung adenocarcinoma. A prognostic risk model was then constructed based on the arlncRNAs, and its predictive efficacy was further validated. Finally, consensus clustering was used to identify the molecular subtypes associated with anoikis in lung adenocarcinoma. Results Seven prognostic arlncRNAs were identified, and the prognostic risk models established based on them had AUC values of ROC curves greater than 0.7. Survival and immune infiltration analyses revealed that low-risk patients had high overall survival and immune infiltration, implying that they experienced good immune treatment effects. Drug sensitivity analysis showed that the high-risk patients were more sensitive to commonly used chemotherapeutic agents than the low-risk patients. According to the expression of model genes, subtypes C1 and C2 were identified through consensus clustering, and C1 showed a good prognosis. Conclusion The prognostic risk model based on the seven arlncRNAs can effectively predict the prognosis of lung adenocarcinoma patients. The results of immune-related and drug sensitivity analyses provide a reference for the precise individualized treatment of patients with lung adenocarcinoma.
ABSTRACT
OBJECTIVE@#Hepatic fibrosis has been widely considered as a conjoint consequence of almost all chronic liver diseases. Chuanxiong Rhizoma (Chuanxiong in Chinese, CX) is a traditional Chinese herbal product to prevent cerebrovascular, gynecologic and hepatic diseases. Our previous study found that CX extracts significantly reduced collagen contraction force of hepatic stellate cells (HSCs). Here, this study aimed to compare the protection of different CX extracts on bile duct ligation (BDL)-induced liver fibrosis and investigate plausible underlying mechanisms.@*METHODS@#The active compounds of CX extracts were identified by high performance liquid chromatography (HPLC). Network pharmacology was used to determine potential targets of CX against hepatic fibrosis. Bile duct hyperplasia and liver fibrosis were evaluated by serologic testing and histopathological evaluation. The expression of targets of interest was determined by quantitative real-time PCR (qPCR) and Western blot.@*RESULTS@#Different CX extracts were identified by tetramethylpyrazine, ferulic acid and senkyunolide A. Based on the network pharmacological analysis, 42 overlap targets were obtained via merging the candidates targets of CX and liver fibrosis. Different aqueous, alkaloid and phthalide extracts of CX (CXAE, CXAL and CXPHL) significantly inhibited diffuse severe bile duct hyperplasia and thus suppressed hepatic fibrosis by decreasing CCCTC binding factor (CTCF)-c-MYC-long non-coding RNA H19 (H19) pathway in the BDL-induced mouse model. Meanwhile, CX extracts, especially CXAL and CXPHL also suppressed CTCF-c-MYC-H19 pathway and inhibited ductular reaction in cholangiocytes stimulated with taurocholate acid (TCA), lithocholic acid (LCA) and transforming growth factor beta (TGF-β), as illustrated by decreased bile duct proliferation markers.@*CONCLUSION@#Our data supported that different CX extracts, especially CXAL and CXPHL significantly alleviated hepatic fibrosis and bile duct hyperplasia via inhibiting CTCF-c-MYC-H19 pathway, providing novel insights into the anti-fibrotic mechanism of CX.
ABSTRACT
Liver fibrosis is a dynamic wound-healing response characterized by the agglutination of the extracellular matrix (ECM). Si-Wu-Tang (SWT), a traditional Chinese medicine (TCM) formula, is known for treating gynecological diseases and liver fibrosis. Our previous studies demonstrated that long non-coding RNA H19 (H19) was markedly upregulated in fibrotic livers while its deficiency markedly reversed fibrogenesis. However, the mechanisms by which SWT influences H19 remain unclear. Thus, we established a bile duct ligation (BDL)-induced liver fibrosis model to evaluate the hepatoprotective effects of SWT on various cells in the liver. Our results showed that SWT markedly improved ECM deposition and bile duct reactions in the liver. Notably, SWT relieved liver fibrosis by regulating the transcription of genes involved in the cytoskeleton remodeling, primarily in hepatic stellate cells (HSCs), and influencing cytoskeleton-related angiogenesis and hepatocellular injury. This modulation collectively led to reduced ECM deposition. Through extensive bioinformatics analyses, we determined that H19 acted as a miRNA sponge and mainly inhibited miR-200, miR-211, and let7b, thereby regulating the above cellular regulatory pathways. Meanwhile, SWT reversed H19-related miRNAs and signaling pathways, diminishing ECM deposition and liver fibrosis. However, these protective effects of SWT were diminished with the overexpression of H19 in vivo. In conclusion, our study elucidates the underlying mechanisms of SWT from the perspective of H19-related signal networks and proposes a potential SWT-based therapeutic strategy for the treatment of liver fibrosis.
Subject(s)
Humans , RNA, Long Noncoding/genetics , Liver Cirrhosis/genetics , Liver/metabolism , Hepatic Stellate Cells/pathology , MicroRNAs/metabolism , Extracellular Matrix/metabolism , Drugs, Chinese HerbalABSTRACT
AIM: To investigate the effect of long non-coding RNA-HIF1A-AS1(lncRNA HIF1A-AS1)on the chemotherapy sensitivity of vincristine(VCR)-resistant in retinoblastoma(RB)cells by regulating the expression of hypoxia-inducible factor-1α(HIF-1α).METHODS: The human RB VCR-resistant cell line SO-RB50/VCR was established, expression of lncRNA HIF1A-AS1 in SO-RB50 and SO-RB50/VCR cells were detected by reverse transcription-quantitative real-time PCR(RT-qPCR); inhibition of lncRNA HIF1A-AS1 expression or simultaneous overexpression of HIF-1α in SO-RB50/VCR cells, and then median inhibitory concentration(IC50)of VCR and cell proliferation and apoptosis were detected in SO-RB50/VCR cells; the protein expressions of HIF-1α, multidrug resistance associate protein(MRP)and P-glycoprotein(P-gp)were measured by Western blot.RESULTS: Compared with SO-RB50 cells, the expression levels of lncRNA HIF1A-AS1 and HIF-1α protein in SO-RB50/VCR cells were increased(P<0.05); after inhibiting the expression of lncRNA HIF1A-AS1 in SO-RB50/VCR cells, the apoptosis rate was significantly increased(P<0.05), optical density(OD450), the IC50 value of VCR on cells and the expression levels of HIF-1α, MRP and P-gp proteins were significantly reduced(P<0.05); overexpression of HIF-1α attenuates the inhibitory effect of down-regulated lncRNA HIF1A-AS1 expression on drug resistance in SO-RB50/VCR cells.CONCLUSION: The lncRNA HIF1A-AS1 was highly expressed in SO-RB50/VCR cells, and inhibition of lncRNA HIF1A-AS1 expression reduced VCR resistance in SO-RB50/VCR cells by down-regulating HIF-1α expression.