Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 187
Filter
1.
Article in Chinese | WPRIM | ID: wpr-930232

ABSTRACT

Objective:To explore the regulatory effect of cellular FLICE-like inhibitory protein (cFLIP) on myocardial ischemia-reperfusion injury based on the RIPK1/RIPK3/MLKL-mediated necroptosis pathway.Methods:The cardiomyocyte hypoxia/reoxygenation (H/R) model was constructed by hypoxia for 4 h/reoxygenation for 12 h, and the rat ischemia reperfusion (I/R) model was constructed by ligating the left anterior descending artery for 30 min and reperfusion for 3 h. CCK-8 method was used to detect the viability of cardiomyocytes in each group. DAPI/PI double staining was used to observe changes in necrosis rate of myocardial cell. STRING database was used to predict the protein interaction network of cFLIP. TTC staining was used to detect the area of myocardial infarction in each group of rats, and the protein expression of cFLIPL, cFLIPS, p-RIPK1, p-RIPK3 and p-MLKL were detected by Western blot.Results:In cardiomyocyte H/R injury and myocardial tissue I/R injury, the protein expressions of cFLIPL and cFLIPS were significantly down-regulated, while the levels of p-RIPK1, p-RIPK3 and p-MLKL were increased significantly. Up-regulating the protein expression of cFLIPL and cFLIPS could significantly reduce the damage of cardiomyocytes and the rate of cell necrosis induced by H/R, and decrease the area of myocardial infarction caused by I/R. STRING database results showed that cFLIP had direct protein interactions with RIPK1 and RIPK3. Overexpression of cFLIP in cardiomyocyte and myocardial tissue significantly inhibited H/R or I/R induced the phosphorylation levels of RIPK1, RIPK3 and MLKL.Conclusions:Overexpression of cFLIP can significantly inhibit the RIPK1/RIPK3/MLKL-mediated necroptosis, thereby reducing myocardial cell damage and decreasing the area of myocardial infarction.

2.
Article in Chinese | WPRIM | ID: wpr-930231

ABSTRACT

Objective:To evaluate the effect of gabapentin on myocardial ischemia-reperfusion injury and its mechanism.Methods:Sixty male clean SD rats, aged 10 weeks and weighing 250 g~300 g, were divided into 5 groups ( n=12) with 12 rats in each group by random number table method: Sham group, myocardial ischemia reperfusion group (group I/R), gabapentin group (group Gap), LY294002 group (group LY) and gabapentin +LY294002 group (group Gap +LY). The model of myocardial ischemia reperfusion injury was established by ligation of the left anterior descending coronary artery for 30 min and reperfusion for 120 min. Heart rate (HR), mean arterial pressure (MAP) and the rate pressure product (RPP) were recorded at baseline before ischemia (T 0) for 30 min (T 1) and reperfusion for 120 min (T 2) to evaluate hemodynamic changes during ischemia and reperfusion; The frequency of PVCs and VT/VF were recorded to evaluate the occurrence of arrhythmias during ischemia/reperfusion. TTC staining was used to detect myocardial infarction area. And the protein expression levels of PI3K and Akt in myocardial tissue were detected by Western blotting. Results:Compared with group I/R, the myocardial infarction area, PVCs and VT/VF times, and the protein expression levels of PI3K and p-Akt were significantly increased in group Gap ( P<0.05). Compared with group Gap, the area of myocardial infarction, the number of PVCs and VT/VF, and the protein expression of PI3K and p-Akt were significantly decreased in the group Gap +LY ( P<0.05). Conclusions:Gabapentin can alleviate myocardial ischemia-reperfusion injury, and its mechanism is related to the activation of PI3K-AKT signaling pathway.

3.
Article in Chinese | WPRIM | ID: wpr-930204

ABSTRACT

Objective:To investigate the dynamic changes of mitochondrial fission and fusion in the heart of cardiac arrest (CA) rats after return of spontaneous circulation (ROSC), and to explore the role of mitochondrial fission and fusion in the myocardial injury after ROSC.Methods:Healthy male SD rats were randomly random number assigned into the post-resuscitation (PR) 4 h ( n=12), PR 24 h ( n=12), PR 72 h ( n=12), and sham groups ( n=6). The rat CA model was induced by asphyxia, and cardiopulmonary resuscitation (CPR) was performed 6 min after CA. The protein expressions of mitochondrial Drp1, Fis1, Mfn1, and Opa1 were determined by Western blot in each group at 4, 24 and 72 h after ROSC. The mRNA expressions of Drp1, Fis1, Mfn1, and Opa1 were determined by RT-PCR. Myocardial ATP content and mitochondrial respiratory function were measured. The histopathologic changes of myocardial tissue were observed under light microscope. One-way analysis of variance (ANOVA) was use to compare quantitative data, and LSD- t test was used for comparison between groups. Results:Compared with the sham group, the protein and mRNA expressions of Drp1 and Fis1 were increased (all P<0.05) and the protein and mRNA expressions of Mfn1 and Opa1 were decreased (all P<0.05) in the PR 4 h and PR 24 h groups. However, there were no statistical differences in the protein and mRNA expressions of Drp1, Fis1, Mfn1, and Opa1 in the PR 72 h group compared with the sham group (all P>0.05). Compared with the sham group, the levels of ATP content [(4.53±0.76) nmol/g protein vs. (8.57±0.44) nmol/g protein and (5.58±0.58) nmol/g protein vs. (8.57±0.44) nmol/g protein] and mitochondrial respiratory control rate [(2.47±0.38) vs. (3.45±0.32) and (2.97±0.24) vs. (3.45±0.32)] were obviously decreased in the PR 4 h and PR 24 h groups (all P<0.05). There were no statistically significant differences in the ATP content [(7.73±0.95) nmol/g protein vs. (8.57±0.44) nmol/g protein] and mitochondrial respiratory control ratio [(3.39±0.34) vs. (3.45±0.32)] between the PR 72 h group and the sham group (all P>0.05). The pathological damage of myocardial tissue was obvious in the PR 4 h group, and was improved significantly in the PR 72 h group. Conclusions:The imbalance of mitochondrial fission and fusion is probably involved in the pathological process of myocardial injury after ROSC, which may be related to mitochondrial dysfunction.

4.
Article in Chinese | WPRIM | ID: wpr-942775

ABSTRACT

Objective: To investigate the effect of piperine on human breast cancer cells. Methods: The effect of piperine on proliferation and migration of human breast cancer cells, MCF-7 and MDA-MB-231, was investigated using colony formation assays, wound healing assays, Matrigel migration assays, flow cytometry, RT-qPCR, and Western blotting assays. Results: Piperine inhibited the growth of MCF-7 and MDA-MB-231 cells and suppressed colony formation. Cell reduction at the G 0 / G 1 phase and cell arrest at the G 2 /M phase were observed in breast cancer cells. However, the significant effect was only demonstrated in MDA-MB-231 cells. Moreover, cancer cell migration was suppressed by piperine at low concentration. RT-qPCR and Western blotting assays showed that piperine downregulated Rac1 gene and protein expression. Conclusions: Piperine could inhibit growth and migration of breast cancer cells by reducing Rac1 gene and protein expression.

5.
Article in Chinese | WPRIM | ID: wpr-942774

ABSTRACT

Objective: To enhance the pharmaceutical potential and oral bioavailability of quercetin contents of Allium cepa peel extract by novel nanosuspension technology. Methods: Nanoprecipitation approach was successfully used for the formulation of nanosuspension. To obtain pharmaceutical-grade nanosuspension with minimum particle size and polydispersity index, sodium lauryl sulphate was selected as a stabilizer. Important formulation parameters were statistically optimized by the response surface methodology approach. The optimized nanosuspension was subjected to stability and in vitro dissolution testing and characterized by scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, and zeta sizer. To evaluate the preeminence of nanosuspension over coarse suspension, comparative bioavailability studies were carried out in male albino rats. The pharmaceutical potential of developed nanosuspension was evaluated by antioxidant, antimicrobial, and toxicity studies. Results: The optimized nanosuspension showed an average particle size of 275.5 nm with a polydispersity index and zeta potential value of 0.415 and -48.8 mV, respectively. Atomic force microscopy revealed that the average particle size of nanosuspension was below 100 nm. The formulated nanosuspension showed better stability under refrigerated conditions. Nanosuspension showed an improved dissolution rate and a 2.14-fold greater plasma concentration of quercetin than coarse suspension. Moreover, the formulated nanosuspension exhibited enhanced antioxidant and antimicrobial potential and was non-toxic. Conclusions: Optimization of nanosuspension effectively improves the pharmaceutical potential and oral bioavailability of Allium cepa extract.

6.
Article in Chinese | WPRIM | ID: wpr-941600

ABSTRACT

Objective: To explore the effect of ethyl acetate gum resin extract of Boswellia serrata on lipopolysaccharide (LPS) induced inflammation and oxidative damage in hepatic and renal tissues of rats. Methods: The rats were divided into four groups: control, LPS, LPS+Boswellia serrata extracts (100 mg/kg and 200 mg/kg). LPS (1 mg/kg) and the extract (100 and 200 mg/kg, 30 min before LPS) were administered intraperitoneally for 3 weeks. The levels of liver enzymes, albumin, total protein, creatinine, blood urea nitrogen (BUN), interleukin (IL)-6, malondialdehyde (MDA), and total thiol groups and superoxide dismutase (SOD) and catalase (CAT) activities were measured. Results: The levels of liver enzymes, creatinine, and BUN, IL-6, MDA in the LPS group were markedly increased (P<0.001) while albumin, total protein, and total thiol concentration, as well as SOD and CAT activities, were decreased compared with the control group (P<0.05 or 0.01). Boswellia serrata extracts diminished the levels of liver enzymes, creatinine, BUN, IL-6, and MDA (P<0.01 and P<0.001), and elevated the concentration of total protein and total thiol and SOD and CAT activities (P<0.05 or 0.01). Conclusions: The ethyl acetate gum resin extract of Boswellia serrata reduces LPS-induced inflammatory reactions and oxidative damage, thus ameliorating hepatic and renal function.

7.
Article in Chinese | WPRIM | ID: wpr-941599

ABSTRACT

Objective: To investigate the antioxidative and antidiabetic effects of Harpephyllum caffrum bark infusion as well as its effects on glucogenic and nucleotide hydrolyzing enzyme activities in FeSO 4 - induced oxidative stress in rat hepatic tissue. Methods: Harpephyllum caffrum infusion was prepared from dried plant materials (40 g) infused in boiling water (400 mL) for 20 min at room temperature. The antioxidative and inhibitory activities against carbohydrate digestive enzymes of the infusion were determined using established protocols. The liver tissues of rats were used for glucose uptake assay and to evaluate the infusion's effect on endogenous antioxidant, glucogenic, and nucleotide hydrolyzing enzyme activities in FeSO 4 -induced hepatic injury. Results: The Harpephyllum caffrum infusion significantly reduced ferric iron (FRAP) and free radicals (OH • and DPPH) in a dose- dependent manner. It inhibited -amylase and -glucosidase activities and increased glucose uptake in hepatic tissues. FeSO 4 significantly decreased glutathione concentration, catalase, and superoxide dismutase activities while increasing malondialdehyde level, glycogen phosphorylase, fructose-1,6-bisphosphatase, and adenosine triphosphatase activities. However, treatment with Harpephyllum caffrum infusion reversed FeSO 4 -induced changes. Characterization of the infusion revealed the presence of catechol, O-pyrocatechuic acid, mequinol, maltol, and glycoside derivatives. Conclusions: The Harpephyllum caffrum infusion demonstrates antidiabetic and antioxidative potentials in in vitro models of type 2 diabetes as depicted by its ability to inhibit carbohydrate digestive enzymes, mitigate oxidative imbalance, and regulate glucogenic and nucleotide hydrolyzing enzyme activities in oxidative hepatic injury.

8.
Article in Chinese | WPRIM | ID: wpr-941598

ABSTRACT

MicroRNAs (miRNAs), small non-coding RNAs, play important roles in regulating host defense against pathogenic infections. This review provides information on the role of miRNAs in the antimycobacterial immune response and summarizes their possible diagnostic utility. It was compiled using scientific literature retrieved from such databases as PubMed, Scopus, ScienceDirect, Google Scholar, and PubMed Central. Relevant articles published in the English language until December 2020 were taken into consideration. It has been revealed that specific host miRNAs induced by Mycobacterium tuberculosis can target diverse factors and pathways in immune signaling to ensure longer pathogen survival inside the phagocytes. The potential use of miRNAs in tuberculosis diagnosis or therapeutic strategies has been attracting increasing attention in recent years. However, despite considerable efforts devoted to miRNA profiling, further studies are needed to elucidate the full potential of miRNAs as novel tuberculosis biomarkers or therapeutic targets.

9.
Article in Chinese | WPRIM | ID: wpr-941597

ABSTRACT

Objective: To elucidate the cytotoxic effect of the secondary metabolites of Barrientosiimonas humi (B. humi) on MCF-7 and MDA-MB-231 human breast cancer cells and its underlying mechanisms of action. Methods: The extract was obtained from the fermentation of B. humi and fractionation of the crude extract was conducted via column chromatography. Cytotoxicity of the B. humi extract was determined by using MTT assay and real-time cellular analysis. Morphological changes, cell cycle profiles, mode of cell death, and caspase expressions of control and treated breast cancer cells were determined. Results: The ethyl acetate extract isolated from B. humi was cytotoxic against MCF-7 and MDA-MB-231 cell lines. One of the dichloromethane (DCM) fractions, designated as DCM-F2, exhibited the strongest activity among all the fractions and thereby was selected for further studies. DCM-F2 had selective cytotoxicity on target cells by inducing apoptosis, particularly in the early stage, and cell cycle arrest. Treated cells caused inhibition of cell cycle progression at 72 h leading to a significant increase (P < 0.05) in the G0/G1 population. DCM-F2 treated MDA-MB-231 cells showed caspase-dependent apoptosis, whereas DCM-F2 treated MCF-7 cells showed a caspase-independent apoptosis pathway. Five compounds were successfully isolated from B. humi. Cyclo (Pro-Tyr) was the most cytotoxic and selective compound against MCF-7 cells. Conclusions: B. humi ethyl acetate extract exhibits significant cytotoxicity against MCF-7 and MDA-MB-231 cells via induction of apoptosis and cell cycle arrest.

10.
Article in Chinese | WPRIM | ID: wpr-941596

ABSTRACT

Objective: To explore the protective role of Glinus lotoides ethanolic extract in a depression model through modulating oxidant/antioxidant enzyme system and inflammatory status. Methods: Phytochemical constituents of Glinus lotoides ethanolic extract were evaluated qualitatively and quantitatively along with HPLC. Rats were divided into six groups. The normal control and the intoxicated groups received normal saline, and the standard group received imipramine, while the remaining groups received 100, 300, and 500 mg/kg Glinus lotoides ethanolic extract. All groups received treatments for 14 d. Lipopolysaccharides (LPS) were then administered i.p. (0.83 mg/kg) to all groups except the normal control group. After 24 h, anxiety and depression-like behaviors were evaluated by performing behavioral analysis (open field, tail suspension, forced swim, sucrose preference test), and determining total oxidant status, total antioxidant capacity, catalase, and biochemical parameters [malondialdehyde, glutathione, superoxide dismutase, tumor necrosis factor (TNF)-alpha and interleukin (IL)-6]. Results: Phytochemical studies confirmed the presence of phenols and flavonoids and HPLC analysis showed the presence of gallic acid, quercetin, chlorogenic, and caffeic acid. Total oxidant status was significantly decreased, while total antioxidant capacity was significantly increased in the Glinus lotoides ethanolic extract treated groups. Moreover, Glinus lotoides ethanolic extract diminished malondialdehyde, IL-6, and TNF-alpha levels, while increasing superoxide dismutase, catalase, and glutathione activities. Conclusions: Glinus lotoides ethanolic crude extract shows significant antidepressant activity by modulating oxidative and biochemical parameters that supports its folkloric use in traditional systems of medicine.

11.
Article in Chinese | WPRIM | ID: wpr-941595

ABSTRACT

Objective: To assess the anti-tumor effects of Pistacia atlantica methanolic extract (PAME) compared with cyclophosphamide against Ehrlich solid tumors in mice. Methods: Swiss albino mice (n=40) were divided into five groups: normal control mice, mice with Ehrlich solid tumors treated with normal saline, mice with Ehrlich solid tumors treated with cyclophosphamide intraperitoneally once a day for 14 d, or 50 mg/kg or 100 mg/kg PAME orally once a day for 14 d. Tumor growth inhibition, body weight, tumor markers, liver and kidney enzymes, oxidative stress markers, antioxidant enzymes, tumor necrosis factor-alpha level (TNF-α), and apoptosis-regulatory gene expression were evaluated. Results: Treatment of mice bearing Ehrlich solid tumors with PAME at 50 and 100 mg/kg orally significantly decreased tumor volume, body weight, tumor markers, liver and kidney enzymes, oxidative stress markers and TNF-α level in comparison with mice with Ehrlich solid tumors receiving normal saline. whereas PAME at 50 and 100 mg/kg/day significantly elevated the level of antioxidant enzymes (P<0.05). Conclusions: Pistacia atlantica methanolic extract has potent antitumor activity in mice. Therefore, the extract might be considered as an alternative anticancer agent against tumors, however, additional studies especially in the clinical setting are required to confirm this finding.

12.
Article in Chinese | WPRIM | ID: wpr-941594

ABSTRACT

Objective: To investigate hypertriglyceridemia and hepatomegaly caused by Schisandrae Sphenantherae Fructus (FSS) and Schisandra chinensis Fructus (FSC) oils in mice. Methods: Mice were orally administered a single dose of Schisandrae Fructus oils. Serum and hepatic triglyceride (TG), triglyceride transfer protein (TTP), apolipoprotein B48 (Apo B48), very-low-density lipoprotein (VLDL), hepatocyte growth factor (HGF), alanine aminotransfease (ALT) and liver index were measured at 6-120 h post-dosing. Results: FSS and FSC oil caused time and dose-dependent increases in serum and hepatic TG levels, with maximum increases in the liver (by 297% and 340%) at 12 h post-dosing and serum (244% and 439%) at 24-h post-dosing, respectively. Schisandrae Fructus oil treatments also elevated the levels of serum TTP by 51% and 63%, Apo B48 by 152% and 425%, and VLDL by 67% and 38% in mice, respectively. FSS and FSC oil treatments also increased liver mass by 53% and 55% and HGF by 106% and 174%, but lowered serum ALT activity by 38% and 22%, respectively. Fenofibrate pre/ co-treatment attenuated the FSS and FSC oil-induced elevation in serum TG levels by 41% and 49% at 48 h post-dosing, respectively, but increased hepatic TG contents (by 38% and 33%, respectively) at 12 h post-dosing. Conclusions: Our findings provide evidence to support the establishment of a novel mouse model of hypertriglyceridemia by oral administration of FSS oil (mainly increasing endogenous TG) and FSC oil (mainly elevating exogenous TG).

13.
Article in Chinese | WPRIM | ID: wpr-941593

ABSTRACT

Objective: To explore the anticoagulant, antiplatelet and antioxidant activities of protein extract of kenaf seed (PEKS). Methods: Sodium dodecyl sulphate polyacrylamide gel electrophoresis and reverse-phase high-performance liquid chromatography techniques were employed for protein characterization. Antioxidant activity of PEKS was assessed using 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. The protective effect of PEKS on sodium nitrite (NaNO 2) induced oxidative stress was evaluated using the in vitro red blood cell model, while the effect of PEKS on diclofenac-induced oxidative stress was examined in vivo in rats. Platelet-rich plasma and platelet-poor plasma were used for anticoagulant and antiplatelet activities of PEKS. Results: PEKS revealed similar protein bands on SDS-PAGE under reduced and non-reduced conditions. Several acidic proteins were present in native PAGE. PEKS showed antioxidant properties by scavenging DPPH with an IC 50 of 24.58 μg. PEKS exhibited a protective effect on NaNO 2 induced oxidative stress in red blood cells by restoring the activity of stress markers. In addition, PEKS alleviated diclofenac-induced tissue damage of the liver, kidney, and small intestine. PEKS showed an anticoagulant effect in both in vivo and in vitro experiments by enhancing normal clotting time. PEKS did not affect prothrombin time but increase activated partial thromboplastin time. Furthermore, PEKS inhibited adenosine diphosphate and epinephrine-induced platelet aggregation. Conclusions: PEKS protects tissues from oxidative stress and exhibits antithrombotic activity.

14.
Article in Chinese | WPRIM | ID: wpr-941592

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) denotes a spectrum of fatty liver disease in individuals without significant alcohol consumption. NAFLD is set to be the most common etiology of serious liver diseases in numerous nations when accompanied by obesity and type 2 diabetes. It is further histologically categorized into the non-alcoholic fatty liver (NAFL; steatosis without hepatocellular injury) and non-alcoholic steatohepatitis (NASH) which is characterized by the coexistence of hepatic steatosis and inflammation and is accompanied by hepatocyte injury (ballooning), either with or without fibrosis. NAFL is considered the benign and reversible stage arising from the excessive accumulation of triglycerides in hepatocytes. However, NASH is a more progressive stage of NAFLD, due to the increased risks of evolving more serious diseases such as cirrhosis, hepatocellular carcinoma. This concept, however, has been lately challenged by a hypothesis of multiple parallel hits of NAFLD, in which steatosis and NASH are separate entities rather than two points of the NAFLD spectrum, not only from a set of histological patterns but also from a pathophysiological perspective. The current review highlights the epidemiology and pathophysiology of NAFLD, and its progression towards steatohepatitis, with special focus on the novel imminent therapeutic approaches targeting the molecular aspects and the pathogenic pathways involved in the development, and progression of NAFLD.

15.
Article in Chinese | WPRIM | ID: wpr-941591

ABSTRACT

Objective: To investigate the effect of the hexane solvent fraction of Halymenia durvillei (HDHE) on triple-negative breast cancer. Methods: The phytochemical profile of HDHE was investigated by GC-MS. The cytotoxicity of HDHE against MDA-MB-231 cells was determined. The apoptotic and autophagic effects of HDHE were analyzed. The expression of molecular markers controlling apoptosis, autophagy, DNA damage, and endoplasmic reticulum (ER) stress was determined. Results: HDHE contains a mixture of fatty acids, mainly hexadecanoic acid. HDHE at a cytotoxic concentration induced apoptotic death of MDA-MB-231 cells through mitochondrial membrane dysfunction, and induction of apoptosis markers, and increased the expression of proteins related to DNA damage response. HDHE also induced the expression of LC-3, a marker of autophagic cell death at a cytotoxic concentration. Moreover, HDHE modulated the expression of ER stress genes. Conclusions: The hexadecanoic acid-enriched extract of Halymenia durvillei promotes apoptosis and autophagy of human triple-negative breast cancer cells. This extract may be further explored as an anticancer agent for triple-negative breast cancer.

16.
Article in Chinese | WPRIM | ID: wpr-941590

ABSTRACT

Objective: To compare the cardioprotective efficacy of equimolar doses (50 mM/kg, p.o.) of phloretin and genistein against doxorubicin-induced cardiotoxicity in rats. Methods: Cardiotoxicity was induced in rats by intraperitoneal injection of 6 mg/kg doxorubicin on alternative days till the cumulative dose reached 30 mg/kg. This study included four treatment groups of rats (n=6): the control group (0.5% carboxymethyl cellulose solution-treated), the doxorubicin- treated group (0.5% carboxymethyl cellulose solution along with doxorubicin), the genistein-treated group (50 mM/kg/day; p.o. along with doxorubicin) and phloretin-treated group (50 mM/kg/day; p.o. along with doxorubicin). On the 10th day of dosing, rats were anesthetized for recording ECG, mean arterial pressure, and left ventricular function. Oxidative stress, nitric oxide levels, and inflammatory cytokines were estimated in the cardiac tissue. Cardiac function parameters (creatine kinase MB, lactate dehydrogenase, aspartate aminotransferase, and alanine transaminase) were estimated in the serum samples. Results: Phloretin treatment inhibited doxorubicin-induced oxidative stress and also reduced nitric oxide levels in cardiac tissues of rats. Phloretin administration attenuated doxorubicin- induced alterations in hemodynamic parameters (heart rate, mean arterial blood pressure, and left ventricular function) and suppressed the expression of pro-inflammatory cytokines. The cardiac injury markers like creatine kinase MB, lactate dehydrogenase, aspartate aminotransferase, and alanine transaminase were reduced by both genistein and phloretin. All these effects of phloretin were more prominent than genistein. Conclusions: Phloretin offers cardioprotection that is comparable to genistein, a clinically validated cardioprotectant against doxorubicin-induced cardiotoxicity. Further studies are needed to confirm and establish the therapeutic utility of phloretin as a chemopreventive adjuvant to doxorubicin chemotherapy.

17.
Article in Chinese | WPRIM | ID: wpr-941589

ABSTRACT

Objective: To investigate the effect of an aqueous extract of Protaetia brevitarsis (AEPB) on osteogenesis using preosteoblast MC3T3-E1 cells and zebrafish larvae. Methods: Flow cytometric analysis was used to measure the cytotoxicy. Alkaline phosphatase activity was detetmined using p-nitrophenyl phosphate as a substrate. Calcium deposition was detected using alizarin red staining along with osteogenic marker expression in preosteoblast MC3T3E1 cells. In addition, vertebral formation in zebrafish larvae was detected using calcein staining and osteogenic gene expression. Results: AEPB highly promoted the expression of osteogenic markers including runt-related transcription factor 2, osterix, and alkaline phosphatase, along with elevated levels of mineralization in MC3T3-E1 cells. Moreover, AEPB accelerated vertebral formation in zebrafish larvae accompanied by upregulated expression of osteogenic genes. FH535, an inhibitor of Wnt/β-catenin, suppressed AEPB-induced osteogenic gene expression and vertebral formation, indicating that AEPB stimulates osteogenesis by activating the Wnt/β-catenin signaling pathway. Conclusions: AEPB stimulates osteoblast differentiation and bone formation by activating β-catenin. Therefore, AEPB is a promising material that induces osteogenesis, and is useful for the treatment of bone resorption diseases.

18.
Article in Chinese | WPRIM | ID: wpr-941588

ABSTRACT

Objective: To determine the lead bioactive compound in kernel extract of Mangifera pajang and its anti-cancer activity against human breast cancer cell lines with positive estrogen receptor (MCF-7). Methods: The methanolic extract of dried powder kernel of Mangifera pajang was exposed to column chromatography for isolation. The structural elucidation of the isolated compound was characterized using infrared, nuclear magnetic resonance, mass spectrometry. Furthermore, cytotoxicity, morphological changes, flow cytometry and cell cycle arrest analyses were performed to examine the mechanism of anti-proliferation and apoptosis induced by methyl gallate against MCF-7. Results: One compound was isolated from the methanolic extract of Mangifera pajang kernel and identified as methyl gallate. The flow cytometric results demonstrated induction of apoptosis in MCF-7 cells by three concentrations of methyl gallate. The cell cycle arrest showed a significant (P<0.05) decrease in cell progression at G 2/M phase of MCF-7 after treatment with 100 μM of methyl gallate. The cell percentage of early and late apoptosis was significant at 10 and 100 μM of methyl gallate. Also, methyl gallate treatment induced up-regulation of reactive oxygen species levels in MCF-7 cells with a reduction in superoxide dismutase levels. Conclusions: These findings indicate that isolated methyl gallate from Mangifera pajang kernel extracts induces growth inhibition and apoptosis in MCF-7 cells via up-regulating oxidative stress pathway.

19.
Article in Chinese | WPRIM | ID: wpr-941587

ABSTRACT

Objective: To evaluate the antioxidant potential and pancreatic lipase inhibitory action of optimized hydroethanolic extracts of Solanum nigrum. Methods: Optimized extraction for maximum recovery of metabolites was performed using a combination of freeze-drying and ultrasonication followed by determination of antioxidant and antiobesity properties. The ultra-high performance liquid chromatography equipped with mass spectrometry was used to analyze metabolite profiling of Solanum nigrum. Computational studies were performed using molecular docking and electrostatic potential analysis for individual compounds. The hypolipidemic potential of the most potent extract was assessed in the obese mice fed on fat rich diet. Results: The 80% hydroethanolic extract exhibited the highest extract yield, total phenolic contents, total flavonoid contents along with the strongest 2,2-diphenyl-1-picrylhydrazyl scavenging activity, total antioxidant power, and pancreatic lipase inhibitory properties. The 80% hydroethanolic extract not only regulated the lipid profile of obese mice but also restricted the weight gain in the liver, kidney, and heart. The 80% hydroethanolic extract also reduced alanine transaminase and aspartate transaminase concentrations in serum. The effects of plant extract at 300 mg/kg body weight were quite comparable with the standard drug orlistat. Conclusions: Solanum nigrum is proved as an excellent and potent source of secondary metabolites that might be responsible for obesity mitigation.

20.
Article in Chinese | WPRIM | ID: wpr-941586

ABSTRACT

Objective: To evaluate the antinociceptive activity of perillyl acetate in mice and in silico simulations. Methods: The vehicle, perillyl acetate (100, 150 and/or 200 mg/kg, i.p.), diazepam (2 mg/kg, i.p.) or morphine (6 mg/kg, i.p.) was administered to mice, respectively. Rotarod test, acetic acid-induced abdominal writhing, formalin-induced nociception, hot plate test, and tail-flick test were performed. Opioid receptors-involvement in perillyl acetate antinociceptive effect was also investigated. Results: Perillyl acetate did not affect the motor coordination of mice. However, it reduced the number of acetic acid-induced abdominal twitches and licking times in the formalin test. There was an increase of latency time in the tail-flick test of 30 and 60 minutes. Pretreatment with naloxone reversed the antinociceptive effect of perillyl acetate (200 mg/kg). In silico analysis demonstrated that perillyl acetate could bind to μ-opioid receptors. Conclusions: Perillyl acetate has antinociceptive effect at the spinal level in animal nociception models, without affecting the locomotor integrity and possibly through μ-opioid receptors. In silico studies have suggested that perillyl acetate can act as a μ-opioid receptor agonist.

SELECTION OF CITATIONS
SEARCH DETAIL