Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 992
Filter
1.
Journal of Pharmaceutical Practice ; (6): 66-72, 2024.
Article in Chinese | WPRIM | ID: wpr-1006843

ABSTRACT

Objective To explore the material basis and mechanism of the Chinese medicine Shenmajingfu granules in the treatment of cerebral infarction. Methods The potential active ingredients and targets of Shenmajingfu granules were retrieved through TCMSP, ETCM database and TCM Database. The related target genes of cerebral infarction were searched from OMIM database. The common targets of Shenmajingfu granules and cerebral infarction were obtained by the intersection method. Cytoscape was used to construct active components of Shenmajingfu granules-targets network. Protein-protein interaction network was constructed by STRING software. DAVID database was used for GO and KEGG enrichment analysis. Results The 183 potential active ingredients of Shenmajingfu granules were screened out. 1785 potential targets were screened in the TCMSP database, including 30 targets related to cerebral infarction. These target genes were mainly involved in the inflammatory response and apoptosis process, involving the TNF signaling pathway, HIF-1 signaling pathway and NF-κB signaling pathway. Conclusion The therapeutic effect of Shenmajingfu granules on cerebral infarction may be related to the regulation of inflammatory response, improvement of impaired neurological function and protection of cerebral ischemia-reperfusion injury.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 109-118, 2024.
Article in Chinese | WPRIM | ID: wpr-1006561

ABSTRACT

ObjectiveThe active ingredients, action targets, and signaling pathways of Cuscutae Semen to control premature ovarian failure were initially predicted by network pharmacology and molecular docking techniques, and an animal model of premature ovarian failure was constructed to explore the mechanism of Cuscutae Semen based on lipid and atherosclerosis signaling pathways. MethodThe effective components and corresponding targets of drugs were obtained from Traditional Chinese Medicines Systems Pharmacology Platform (TCMSP), Swiss Target Prediction, Pharmmapper, and other databases. GeneCards database was used to collect disease-related targets. Venny2.1.0 online tool was used to screen out the intersection targets of drugs and diseases, and STRING database and Cytoscape v3.7.2 software were used to construct the network diagram of "drug-component-target" and protein-protein interaction (PPI). The gene ontology (GO) and the Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses of the intersection targets were performed by running the R language script. The molecular docking technology was utilized to dock drug components with targets and visualize some of the docking results. The mice were randomly divided into a blank group, a model group, a Cuscutae Semen group, and an estradiol valerate group, and the ovarian premature failure model was prepared by chronic stress. The blank group and the model group were gavaged with the same amount of normal saline, and the Cuscutae Semen group was given a Cuscutae Semen decoction of 2.6 g·kg-1·d-1. The estradiol valerate group was given an estradiol valerate solution of 0.13 mg·kg-1·d-1. After four weeks, samples were collected, and hematoxylin-eosin (HE) staining was performed to observe the histopathological changes in the ovary. Serum levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2), Muller's tube inhibitor/anti-Muller's tube hormone (AMH), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) were determined by enzyme-linked immunosorbent assay (ELISA). The expression levels of extracellular regulatory protein kinase (ERK), nuclear transcription factor-κB p65 (NF-κB p65), nuclear transcription factor-κB suppressor α (IκBα), interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) were measured by Western blot. ResultA total of 171 targets of Cuscutae Semen for the prevention and treatment of premature ovarian failure were screened, mainly including tumor protein p53 (TP53), protein kinase B1 (Akt1), sarcoma (SRC), tumor necrosis factor (TNF), epidermal growth factor receptor (EGFR), etc. KEGG pathway enrichment analysis predicts that Cuscutae Semen is mainly involved in lipid and atherosclerosis, TNF signaling pathway, and TP53 signaling pathway to control premature ovarian failure. The animal experiments show that compared with the premature ovarian failure model group, the Cuscutae Semen group can significantly upregulate AMH, E2, and HDL-C (P<0.05, P<0.01), significantly downregulate LH, TC, and LDL-C (P<0.01), greatly reduce IL-1β, IL-6, and TNF-α protein levels, as well as ERK, NF-κB p65, and their phosphorylation levels (P<0.01). ConclusionCuscutae Semen can regulate hormone levels and improve ovarian function through a multi-component, multi-target, and multi-pathway approach, and the mechanism may be related to the regulation of lipid and atherosclerosis signaling pathways.

3.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 178-187, 2024.
Article in Chinese | WPRIM | ID: wpr-1006519

ABSTRACT

Objective@#To explore the molecular mechanism of resveratrol (RES) in the treatment of oral squamous cell carcinoma (OSCC) through the use of biological information methods such as network pharmacology and molecular docking and to provide a theoretical reference for the clinical application of RES in the treatment of OSCC.@*Methods@#The Swiss Target Prediction(http://www.swisstargetprediction.ch), SEA (http://sea.bkslab.org)database, and Pharm mapper database(http://lilab-ecust.cn) were used to retrieve RES-related targets, and the DISGENET (www.disgenet.org), OMIM (https://omim.org) and GeneCards (https://www.genecards.org) databases were used to screen OSCC disease targets. The intersection of drugs and disease targets was determined, and Cytoscape 3.7.2 software was used to construct a "drug-diseasetarget pathway" network. The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database was used to construct a target protein interaction network, and the DAVID database was used for enrichment analysis of key proteins. Finally, molecular docking validation of key proteins was performed using AutoDock and PyMOL. The enrichment analysis and molecular docking results were integrated to predict the possible molecular mechanisms of RES treatment in OSCC; western blot was used to determine the effect of resveratrol at different concentrations (50, 100) μmol/L on the expression of Src tyrosine kinase (SRC), epidermal growth factor receptor (EGFR), estrogen receptor gene 1 (ESR1), and phosphatidylinositol 3 kinase/protein kinase B (PI3K/AKT) signaling pathway proteins in OSCC HSC-3 cells.@*Results@#A total of 243 targets of RES drugs and 6 094 targets of OSCC were identified. A total of 116 potential common targets were obtained by intersecting drugs with disease targets. These potential targets mainly participate in biological processes such as in vivo protein self-phosphorylation, peptide tyrosine phosphorylation, transmembrane receptor protein tyrosine kinase signaling pathway, and positive regulation of RNA polymerase Ⅱ promoter transcription, and they interfere with the PI3K/AKT signaling pathway to exert anti-OSCC effects. The docking results of resveratrol with OSCC molecules indicated that key targets, such as EGFR, ESR1, and SRC, have good binding activity. The results of cell-based experiments showed that resveratrol inhibited the protein expression of SRC, EGFR, ESR1, p-PI3K, and p-AKT in HSC-3 cells in a dose-dependent manner.@*Conclusion@#RES can inhibit the expression of its targets EGFR, ESR1, SRC, p-PI3K, and p-AKT in OSCC cells.

4.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 89-100, 2024.
Article in Chinese | WPRIM | ID: wpr-1006353

ABSTRACT

Objective@#To investigate the potential caries prevention mechanism of the Xinjiang Mori cortex and to analyze its effect on the main cariogenic bacteria.@*Methods@#The active components of the Xinjiang Mori cortex and the main targets were predicted and screened using the TCMSP database. The GeneCards, DisGENET and TTD databases were used to obtain caries-related targets. The common targets were derived, and core genes were screened. The enrichment analysis was performed using the DAVID data platform. Molecular docking was performed using AutoDock software. In in vitro antibacterial experiments, first, the 50% minimum inhibitory concentration (MIC50) and the minimum bactericidal concentration (MBC) of the Xinjiang Mori Cortex extract against Streptococcus mutans, Streptococcus sanguis and Actinomyces viscosus were determined and the growth curves were measured. The effects of the Xinjiang Mori Cortex extract on acid production, polysaccharide production and adhesion ability of Streptococcus mutans, Streptococcus sanguis and Actinomyces viscosus in the planktonic state were determined. The 50% minimum biofilm inhibition concentration (MBIC50) and 50% minimum biofilm reduction concentration (MBRC50) were determined by crystal violet staining, and biofilm morphology was visualized using scanning electron microscopy (SEM).@*Results@#The main active components of the Xinjiang Mori cortex included quercetin, kaempferol, and β-sitosterol. Tumor necrosis factor (TNF), interleukin-6 (IL-6), and interleukin-1beta (IL-1β) could be the most important targets of the Xinjiang Mori cortex for the prevention of dental caries. The enrichment analysis results showed that Mori cortex extract may have effects on the AGE-RAGE signaling pathway, IL-17 signaling pathway, and TNF signaling pathway. The antibacterial experiment results showed that the MIC50 values of Xinjiang Mori Cortex extract against Streptococcus mutans, Streptococcus sanguis and Actinomyces viscosus were 0.5, 0.5 and 0.25 mg/mL, respectively, and the MBCs were 4.0, 2.0 and 1.0 mg/mL, respectively. The inhibitory effect of Xinjiang Mori Cortex extract on the acid production, polysaccharide production and adhesion ability of three major cariogenic bacteria in the planktonic state was stronger than that of the control group, and the differences were statistically significant (P<0.05). The MBIC50 was 1.0, 1.0, and 0.5 mg/mL, and the MBRC50 was 4.0, 4.0, and 2.0 mg/mL. SEM observation showed that the amount of biofilm formation decreased with the drug concentration compared with the control group.@*Conclusion@#Xinjiang Mori cortex extract can prevent caries through quercetin, kaempferol, and β-sitosterol active ingredients, TNF、IL-6、IL-1β key targets and multiple pathways and inhibit the growth, acid production, polysaccharide production, and adhesion ability of three major cariogenic bacteria in the planktonic state and has some inhibitory effect on corticogenic biofilm formation.

5.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 176-185, 2024.
Article in Chinese | WPRIM | ID: wpr-1006283

ABSTRACT

In order to promote the innovative application of Sanjiao theory and Yingwei theory, this paper tries to apply the ''Sanjiao-Yingwei'' Qi transformation theory to the treatment of tumor diseases, integrating it with T cell exhaustion mechanism to elaborate on its scientific connotation and using network pharmacology and bioinformatics to elucidate the correlation between the anti-tumor mechanism of ''Sanjiao-Yingwei'' Qi transformation and T cell exhaustion. The ''Sanjiao-Yingwei'' Qi transformation function is closely related to the immunometabolic ability of the human body, and the ''Sanjiao-Yingwei'' Qi transformation system constitutes the immunometabolic exchange system within and outside the cellular environment. Cancer toxicity is generated by the fuzzy Sanjiao Qi, and the long-term fuzzy Sanjiao Qi is the primary factor leading to T cell exhaustion, which is related to the long-term activation of T cell receptors by the high tumor antigen load in the tumor microenvironment. Qi transformation malfunction of the Sanjiao produces phlegm and collects stasis, which contributes to T cell exhaustion and is correlated with nutrient deprivation, lipid accumulation, and high lactate levels in the immunosuppressed tumor microenvironment, as well as with the release of transforming growth factor-β and upregulated expression of programmed death receptor-1 by tumor-associated fibroblasts and platelets in the tumor microenvironment. Ying and Wei damage due to Sanjiao Qi transformation malfunction is similar to the abnormal manifestations such as progressive loss of exhausted T cell effector function and disturbance of cellular energy metabolism. Guizhi decoction, Shengming decoction, and Wendan decoction can correct T cell exhaustion and exert anti-tumor effects through multi-target and multi-pathways by regulating ''Sanjiao-Yingwei'' Qi transformation, and hypoxia inducible factor-1α (HIF-1α) may be one of the main pathways to correct T cell exhaustion. It was found that HIF-1α may be one of the important prognostic indicators in common tumors by bioinformatics. The use of the ''Sanjiao-Yingwei'' Qi transformation method may play an important part in improving the prognosis of tumor patients in clinical practice.

6.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 72-79, 2024.
Article in Chinese | WPRIM | ID: wpr-1006270

ABSTRACT

ObjectiveTo study the mechanism of astragaloside Ⅳ (AS Ⅳ) on db/db mice with type 2 diabetes mellitus (T2DM) and non-alcoholic fatty liver disease (NAFLD) based on network pharmacology and experimental validation. MethodA total of 24 db/db mice were randomly divided into four groups: model group, metformin group, and low-dose and high-dose AS Ⅳ groups. Six C57 mice were used as the blank group. The low-dose and high-dose AS Ⅳ groups were given AS Ⅳ of 0.015 and 0.030 g·kg-1 by gavage, and the metformin group was given 0.067 g·kg-1 by gavage. The blank and model groups were given equal volumes of distilled water by gavage. After intragastric administration, fasting blood glucose (FBG) was detected, and an oral glucose tolerance test was performed. Serum lipid level and liver histopathology were detected. The target and enrichment pathway of AS Ⅳ for treating T2DM and NAFLD were predicted by network pharmacology, and the main enrichment pathway was verified by molecular biology techniques. The protein expressions of AMPK, p-AMPK, sterol regulatory element-binding protein-1 (SREBP-1), and fatty acid synthetase (FAS) in liver tissue were detected by Western blot. ResultCompared with the blank group, the levels of body mass, liver weight coefficient, fasting blood glucose, serum total cholesterol, triglyceride, and low-density lipoprotein cholesterol in mice treated with AS Ⅳ were decreased (P<0.05, P<0.01). The pathology of liver tissue showed significant improvement in lipid accumulation, and imaging results showed that the degree of fatty liver was reduced after AS Ⅳ therapy. Network pharmacological prediction results showed that vascular endothelial growth factor α (VEGFA), galactoagglutinin 3 (LGALS3), serine/threonine kinase B2 (Akt2), RHO-associated coiled-coil protein kinase 1 (ROCK1), serine/threonine kinase B1 (Akt1), signaling and transcriptional activator protein (STAT3), and messtimal epidermal transformation factor (MET) were key targets in "drug-disease" network. The results from the Kyoto encyclopedia of genes and genomes (KEGG) enrichment showed that the AMP-dependent protein kinase (AMPK) signaling pathway was strongly associated with T2DM and NAFLD. Western blot results showed that compared with the blank group, the expression levels of p-AMPK/AMPK in the model group were significantly down-regulated, while those of SREBP-1 and FAS proteins were significantly up-regulated (P<0.01). Compared with the model group, the expression levels of p-AMPK/AMPK in the metformin group and high-dose AS Ⅳ group were significantly up-regulated, while those of SREBP-1 and FAS proteins were significantly down-regulated (P<0.05, P<0.01). ConclusionAS Ⅳ regulates the expression of lipid proteins by activating the AMPK signaling pathway, thereby improving lipid metabolism.

7.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 28-34, 2024.
Article in Chinese | WPRIM | ID: wpr-1006265

ABSTRACT

ObjectiveTo establish an ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry(UHPLC-QqQ-MS) for determination of the active ingredients in Erdongtang, and to predict the targets and pathways of anti-insulin resistance action of this formula. MethodThe analysis was performed on an ACQUITY UPLC BEH C18 column(2.1 mm×100 mm, 1.7 μm) with the mobile phase of 0.1% formic acid aqueous solution(A)-acetonitrile(B) for gradient elution(0-3 min, 90%-87%A; 3-6 min, 87%-86%A; 6-9 min, 86%-83%A; 9-11 min, 83%-75%A; 11-18 min, 75%-70%A; 18-19 min, 70%-52%A; 19-22 min, 52%A; 22-25 min, 52%-5%A; 25-27 min, 5%-90%A; 27-30 min, 90%A). The contents of active ingredients in Erdongtang was detected by electrospray ionization(ESI) and multiple reaction monitoring(MRM) mode under positive and negative ion modes. On this basis, network pharmacology was applied to predict the targets and pathways of Erdongtang exerting anti-insulin resistance effect. ResultThe 20 active ingredients in Erdongtang showed good linear relationships within a certain mass concentration range, and the precision, stability, repeatability and recovery rate were good. The results of determination showed that the ingredients with high content in 15 batches of samples were baicalein(1 259.39-1 635.78 mg·L-1), baicalin(1 078.37-1 411.52 mg·L-1), the ingredients with medium content were mangiferin(148.59-217.04 mg·L-1), timosaponin BⅡ(245.10-604.89 mg·L-1), quercetin-3-O-glucuronide(89.30-423.26 mg·L-1), rutin(46.91-1 553.61 mg·L-1), glycyrrhizic acid(55.97-391.47 mg·L-1), neomangiferin(37.45-127.03 mg·L-1), nuciferine(0.89-63.48 mg·L-1), hyperoside(6.96-136.78 mg·L-1), liquiritin(30.89-122.78 mg·L-1), liquiritigenin(26.64-110.67 mg·L-1), protodioscin(58.57-284.26 mg·L-1), the ingredients with low content were wogonin(7.16-20.74 mg·L-1), pseudoprotodioscin(5.49-22.96 mg·L-1), ginsenoside Rb1(7.31-23.87 mg·L-1), ginsenoside Rg1(10.78-28.33 mg·L-1), ginsenoside Re(7.78-24.76 mg·L-1), ophiopogonin D(2.08-4.29 mg·L-1), methylophiopogonanone A(0.74-1.67 mg·L-1). The results of network pharmacology indicated that the mechanism of anti-insulin resistance exerted by Erdongtang might be related to the phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt) signaling pathway. ConclusionThe established UHPLC-QqQ-MS has the advantages of simple sample processing, strong exclusivity and high sensitivity, and can simultaneously determine the contents of the main ingredients from seven herbs in Erdongtang, which can lay the foundation for the development of Erdongtang compound preparations. The results of the network pharmacology can provide a reference for the mechanism study of Erdongtang in the treatment of type 2 diabetes mellitus.

8.
Journal of Pharmaceutical Practice ; (6): 24-31, 2024.
Article in Chinese | WPRIM | ID: wpr-1005423

ABSTRACT

Objective To investigate the mechanism of Qizhenziyin mixture in the treatment of hypogonadism by using the network pharmacology approach. Methods The active components of Qizhenziyin mixture were obtained by searching TCMSP ,TCMID and HIT databases.The related targets of candidate compounds were obtained by searching STITCH databases. The potential targets of Qizhenziyin mixture in the treatment of hypogonadism were obtained by mapping the disease genes of hypogonadism with Genecards and DisGeNet databases. The protein interaction platform database (STRING) was used to construct the interaction relationship between action targets. The target protein interaction (PPI) network was constructed by introducing Cytoscape software. The mechanism of Qizhenziyin mixture in the treatment of hypogonadism was explained through the enrichment analysis of GO, KEGG and molecular docking technology. Results A total of 148 drug-disease chemical compounds, 96 drug-disease intersection targets, 1085 disease targets were obtained;the components for treating diseases are: quercetin,kaempferol, luteolin, etc; enrichment analysis of GO revealed 1792 biological processes (BP), 31 cellular components (CC) and 79 molecular functions (MF);the results of KEGG pathway enrichment analysis indicated such as FOXO signaling pathway, prostate cancer, AGE-RAGE signaling pathway in diabetic complications, HIF-1 signaling pathway, etc.The results of molecular docking showed that kaempferol and LEP had the best and stable binding energy. Conclusion The active components of Qizhenziyin mixture may play a role of the treatment of hypogonadism by improving insulin resistance and the expression of testosterone synthetase of Leydig cells.

9.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 124-132, 2024.
Article in Chinese | WPRIM | ID: wpr-1003774

ABSTRACT

ObjectiveTo analyze the antidepressant quality markers(Q-Marker) of Bupleuri Radix(BP) before and after vinegar-processing by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS), multivariate statistical analysis and network pharmacology. MethodUPLC-Q-TOF-MS was used to analyze the chemical basis of raw and vinegar-processed products of BP, and principal component analysis(PCA) orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to identify the differential components in BP that changed significantly before and after vinegar-processing, which were regarded as candidate quality markers(Q-Marker). Then the disease-drug-component-target network related to antidepressant effect of BP was constructed by network pharmacology, and the antidepressant Q-Marker of raw and vinegar-processed products of BP was determined. Rats were randomly divided into blank group, model group, fluoxetine group(2.67 mg·kg-1) and total saponin group(0.72 mg·kg-1), except the blank group, rats in the other groups were subjected to chronic unpredictable mild stress(CUMS). Three weeks after the start of modeling, rats in each administration group were given the corresponding dose of drugs once a day for 4 weeks, and rats in the blank and model groups were given normal saline with dose of 10 mL·kg-1. At 1 day before modeling, 21 days and 28 days after administration, body mass weighing, sucrose preference test and open field test were performed on each group . After 28 days of administration, real-time fluorescence quantitative polymerase chain reaction(Real-time PCR) was used to detect the mRNA expression levels of phosphatidylinositol 3-kinase(PI3K), protein kinase B(Akt), mammalian target of rapamycin(mTOR), glycogen synthase kinase-3β(GSK-3β), forkhead box transcription factor O3a(FoxO3a) and β-catenin in hippocampal tissues of rats in each group, while protein expression levels of PI3K, Akt, mTOR and FoxO3a in hippocampal tissues of rats in each group were detected by Western blot. ResultThere were 19 components in BP showed significant changes before and after vinegar-processing, and 9 components such as saikosaponin A, saikosaponin B1, saikosaponin B2, saikosaponin C and saikosaponin D were identified as potential Q-Marker through S-plot differential marker screening. Combined with the disease-drug-component-target network, saikosaponin A, saikosaponin B1, saikosaponin B2 and saikosaponin D were identified as antidepressant Q-Marker of raw and vinegar-processed products of BP. According to the results of pharmacodynamic tests, after 28 d of administration, compared with the blank group, the body mass, sucrose preference index and open field total score of rats in model group, fluoxetine group and total saponin group decreased significantly(P<0.01). Compared with the model group, the body mass, sucrose preference index and open field total score in total saponin group increased significantly(P<0.01). Compared with the blank group, mRNA expression levels of PI3K, Akt, mTOR and β-catenin in hippocampus of rats in the model group decreased significantly(P<0.05), while mRNA expression levels of GSK-3β and FoxO3a increased significantly(P<0.05). Compared with the model group, mRNA expression levels of PI3K, Akt, mTOR and β-catenin in hippocampus of rats in the total saponin group were increased significantly(P<0.05), while mRNA expression levels of GSK-3β and FoxO3a decreased significantly(P<0.05). Compared with the blank group, the protein expression levels of Akt and mTOR in hippocampus of the model group decreased significantly(P<0.01), while the protein expression levels of PI3K and FoxO3a increased significantly(P<0.01). Compared with the model group, the expression level of Akt in hippocampus of the total saponin group increased significantly(P<0.01), the mTOR expression level was increased but not statistically significant, while the protein expression levels of PI3K and FoxO3a decreased significantly(P<0.01). ConclusionThe chemical constituents of BP changed greatly after vinegar-processing, and the antidepressant Q-Marker of raw and vinegar-processed products of BP was determined by chemical basis, pharmacodynamics, network pharmacology and signaling pathway, which provided a reference for further research on quality control, pharmacodynamic substance basis and processing mechanism of BP.

10.
Acta Pharmaceutica Sinica ; (12): 633-642, 2024.
Article in Chinese | WPRIM | ID: wpr-1016622

ABSTRACT

italic>Anoectochilus roxburghii liquid (spray, a hospital preparation of Wu Mengchao Hepatobiliary Hospital of Fujian Medical University) has shown a good clinical treatment effect during the COVID-19 pandemic, but its material basis and mechanism of action are still unclear. In this study, network pharmacology and molecular docking methods were used to predict the molecular mechanism of A. roxburghii liquid against COVID-19, and pharmacodynamic experiments in vitro were conducted to study the interaction between the current targets with clear preventive and therapeutic effects and the key components of A. roxburghii liquid. UPLC-MS and database were used to compare and analyze the active ingredients in the liquid, and 17 potential active ingredients with good drug-like properties were screened by in vivo pharmacokinetics process in SwissADME database. SwissTargetPrediction and GeneCards were searched to find 93 common targets. Cytoscape 3.8.2 software was used to construct the "component-target" network map, and the Metascape platform was used for gene function annotation and pathway enrichment analysis. It was found that the extract could regulate the positive response to external stimuli, inflammatory response, cytokine production and other biological processes by binding the active ingredients such as isorhamnetin, kaempferol, luteolin, quercetin and apigenin to the common targets (NOS3, MPO, MMP3, etc.), and play an anti-COVID-19 role. In the angiotensin-converting enzyme 2 (ACE2) activity inhibition assay, it was found that the stock solution of A. roxburghii liquid (for spray), and the supernatant after removing polysaccharides (mainly containing flavonoids) could to some extent inhibit the activity of ACE2. Crucially, in the experiment of 2019-nCOV-S pseudovirus infecting HEK-293T-ACE2 cells, we found that A. roxburghii liquid may exert anti-COVID-19 effects by blocking the binding of SARS-CoV-S protein to ACE2.

11.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 45-53, 2024.
Article in Chinese | WPRIM | ID: wpr-1016461

ABSTRACT

ObjectiveTo explore the molecular mechanism of Sanhuang Xiexintang (SHXXT) in protecting stress gastric ulcer (SGU) in rats through network pharmacology, molecular docking, and animal experiments. MethodThe active ingredients and corresponding targets in SHXXT were collected and screened from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Traditional Chinese Medicine Information Database (TCMID), Bioinformation Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM), and Swiss Target Prediction database. SGU-related targets were screened from the Online Mendelian Inheritance in Man (OMIM), Therapeutic Target Database (TTD), GeneCards database, and PharmGKB database. Herbal-ingredient-target (H-C-T) network was constructed by using Cytoscape 3.9.1 software. Protein-protein interaction (PPI) of drug and disease intersection targets was analyzed by using the Protein Interaction Platform (STRING) database. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted through the Database for Annotation Visualization and Integrated Discovery (DAVID). The active ingredients and key targets were validated using AutodockVina 1.2.2 molecular docking software, and the experimental results were further validated through animal experiments. ResultThe 55 active ingredients were screened, and 255 potential target genes for SHXXT treatment of SGU were predicted. The PPI analysis showed that protein kinase B (Akt), phosphatase and tensin homolog deleted on chromosome ten (PTEN), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and cyclooxygenase-2 (COX-2) are the core targets of SHXXT for protecting SGU. GO and KEGG analyses showed that SHXXT may affect the development of SGU by regulating various biological processes such as the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway and inflammatory processes. The molecular docking results showed that both the active ingredients and key targets had good binding ability. Animal experiments showed that compared with the blank group, the ulcer index (UI) of the model group was significantly increased (P<0.01), and the serum levels of TNF-α and IL-1β significantly increased (P<0.01). The phosphorylation level of PTEN in gastric mucosal tissue was significantly down-regulated (P<0.05). The phosphorylation levels of PI3K, Akt, and nuclear factor kappa-B (NF-κB) were significantly up-regulated (P<0.05). Compared with the model group, the UI of the treatment group was significantly reduced (P<0.01), and the serum levels of TNF-α and IL-1β were significantly reduced (P<0.01). The phosphorylation level of PTEN in gastric mucosal tissue was significantly up-regulated (P<0.01), and the phosphorylation levels of PI3K, Akt, and NF-κB were significantly downregulated (P<0.01). ConclusionThe application of network pharmacology prediction, molecular docking simulation, and animal experimental validation confirms that SHXXT regulates the PI3K/Akt/NF-κB signaling pathway to regulate the inflammatory response of rats and thus protects the gastric mucosa of SGU rats.

12.
Chinese Journal of Clinical Pharmacology and Therapeutics ; (12): 26-36, 2024.
Article in Chinese | WPRIM | ID: wpr-1014571

ABSTRACT

AIM: Yi Qi Yang Yin Decoction (YQYY) has been used to treat patients with rheumatoid arthritis (RA) and achieved good results in clinical applications, but the mechanism still needs to be explored. The purpose was to investigate the mechanism of YQYY in rats with collagen-induced arthritis. METHODS: The possible treatment target and signaling pathway were predicted by bioinformatics and network pharmacology analysis. Elisa,quantitative real-time polymerase chain reaction, and Western Blot were used to verify the mechanism of YQYY in treating RA. RESULTS: FABP4, MMP9 and PTGS2 were the most common predicational therapeutic targets. The results of pathology and CT showed that YQYY could improve ankle swelling, synovitis and bone erosion in CIA rats. Compared with the model group, YQYY or YQYY+MTX can significantly reduce the secretion of CRP, TNF-α, IL-1β and FABP4 in serum of CIA rats (P<0.05 or P<0.01), meanwhile, reduce the mRNA of FABP4, IKKα and p65 in synovial tissue (P<0.01), PPARγ was increased (P<0.01). YQYY could significantly reduce the expression of FABP4, IKKα and pp65 proteins in synovium, and suppress the activate of NF - κB signaling pathway. CONCLUSION: FABP4, MMP9 and PTGS2 may be the targets of YQYY decoction for RA treatment. YQYY can relieve joint symptoms in CIA rats, and regulate inflammation by inhibiting FABP4 / PPARγ/NF - κB signaling pathway, playing a role in the treatment of RA. The effect of YQYY combined with MTX was more prominent. This provided experimental evidence for the efficacy of YQYY decoction in clinical practice.

13.
Chinese Journal of Clinical Pharmacology and Therapeutics ; (12): 11-25, 2024.
Article in Chinese | WPRIM | ID: wpr-1014564

ABSTRACT

AIM: To predict the core targets and related signaling pathways of Yi-xin-yin oral liquid for the treatment of arrhythmia, heart failure and myocarditis based on UHPLC-Q-TOF/MS, network pharmacology, molecular docking methods, cell experiments, according to the“homotherapy for heteropathy”theory in traditional Chinese medicine. METHODS: UHPLC-Q-TOF / MS was used to analyze and identify the chemical composition of Yi-xin-yin oral liquid Extract and the blood-absorbing components of rats oral administrated with Yi-xin-yin oral liquid extract, which compounds were applied in the databases searching for the potential targets (TCMSP, SwissTargetPrediction) and disease targets (OMIM, Genecard). Venn diagram was used for target intersection, and the subsequent protein-protein interaction network obtained core targets by STRING11.5 database, and then construct a "disease-component-target" network by cytoscape3.9.0. Finally, DAVID database was used to analysis GO function and KEGG enrichment analysis of core targets, and molecular docking validation was performed using Autodock vina software. And, validated with H9c2 cells for potential active ingredients and targets. RESULTS: A total of 156 compounds were identified from Yi - xin-yin Oral Liquid extract; 34 compounds were identified from rat serum, including 6-gin-gerol, isoliquiritigenin, glycyrrhizic acid and other compounds, and 139 intersecting targets were obtained. The KEGG pathway enrichment analysis mainly involved the TNF signaling pathway, IL-17 signaling pathway, MAPK signaling pathway, PI3K-Akt signaling pathway and so on. The TNF and IL-6 targets were selected for molecular docking with the main compounds, and the docking results were good (less than -5 kcal/mol). In vitro cellular experiments have shown that Yi-xin-yin oral liquid can exert therapeutic effects by regulating TNF and IL-6. CONCLUSION: The main potential active ingredients of Yi-xin-yin oral liquid may be isoliquiritigenin, glycyrrhetinic acid, calycosin-7-glucoside, salvianolic acid B, and 6-gingerol, which mainly act on TNF, IL-6 and other targets to regulate specific signaling pathways and exert therapeutic effects.

14.
Chinese Journal of Clinical Pharmacology and Therapeutics ; (12): 241-251, 2024.
Article in Chinese | WPRIM | ID: wpr-1014534

ABSTRACT

AIM:To explore the anti-ulcerative colitis mechanism of Buzhongyiqi pills based on the network pharmacology and experimental verification. METHODS: UPLC-QE-MS was used for qualitative analysis of Buzhongyiqi pills. Targets of the chemistry constituents and the disease were retrieved from GeneCards. Then the protein-protein interaction (PPI) network was constructed and core targets were screened for GO term enrichment and KEGG pathway enrichment. Ulcerative colitis mouse model was established to verify the key targets. RESULTS: A total of 41 constituents migrating of Buzhongyiqi pills were identified. A total of 123 common targets of the constituents and the disease and 24 core targets were screened out.KEGG enrichment and PPI network analysis showed that Buzhongyiqi pills may play a role in the treatment of ulcerative colitis through Akt, PI3K and other pathways. Furthermore, the results of animal experiments showed that Buzhongyiqi pills could significantly improve the depression behaviors of ulcerative colitis, reduce the levels of IL-6 and TNF-α in serum, inhibition Akt/PI3K signaling, and reduce the protein expression of PI3K. CONCLUSION: Buzhongyiqi pills may play a role in the treatment of ulcerative colitis by inhibition Akt / PI3K signaling pathway, and inhibiting PI3K and reduce the levels of IL-6 and TNF-α in the mice.

15.
Chinese Pharmacological Bulletin ; (12): 573-581, 2024.
Article in Chinese | WPRIM | ID: wpr-1013656

ABSTRACT

Aim To explore the mechanism of action of Ruanmai decoction in treating atherosclerosis through network pharmacology. Methods The chemical components and targets of Ruanmai decoction were queried using TCMSP. Relevant targets for atherosclerosis were retrieved from DrugBank, GeneCards, OMIM, and TTD databases. The " Drug-Active Ingredient-Target" PPI network was constructed using Cyto-scape software. GO and KEGG enrichment analysis were performed using the David database. Molecular docking verification of key components with core targets was conducted using the Seesar software. Atherosclerosis mouse models were established by feeding ApoE mice with a high-fat diet, and Ruanmai decoction granules were administered orally. Aortic pathological sections were stained, blood lipids were measured, and immunofluorescence was used to detect Mac2 and YWHAZ protein expression. Western blot was used to detect p-p38MAPK and C-CASP3 protein expression. Results Ruanmai decoction screened a total of 72 active drug components corresponding to 168 target genes for the treatment of atherosclerosis. The targets were primarily enriched in biological processes related to lip-id metabolism, inflammation and immunity, oxidative stress, vascular endothelial function, cell proliferation and apoptosis, glycolysis, and ubiquitination. Signaling pathways such as МАРК, TNF, PDK-Akt, and IL-17 were also involved. Animal experiments verified that RMJ could regulate the p38MAPK signaling pathway by down-regulating key targets YWHAZ, p-p38MAPK, and C-CASP3, thereby reducing AS inflammation and inflammation-induced apoptosis. Conclusions Ruanmai decoction can inhibit the expression of YWHAZ and activate the p38MAPK signaling pathway, potentially improving vascular inflammation, lipid metabolism, oxidative stress, and other pathological processes by regulating the МАРК, TNF, PDK-Akt, and IL-17 signaling pathways, thus preventing and treating atherosclerosis.

16.
Chinese Pharmacological Bulletin ; (12): 565-573, 2024.
Article in Chinese | WPRIM | ID: wpr-1013655

ABSTRACT

Aim To explore the efficacy of levosimendan on hypoxia pulmonary hypertension through animal experiments, and to further explore the potential mechanism of action using network pharmacological methods and molecular docking technique. Methods The rat model of hypoxia pulmonary hypertension was constructed to detect right heart systolic pressure and right heart remodeling index. HE , Masson, and VG staining were core targets were screened out. GO and KEGG pathway enrichment analysis were performed using the DAVID database. Molecular docking of the core targets was performed with the AutoDock software. Results The results of animal experiments showed that levosimendan had obvious therapeutic effect on hypoxia pulmonary hypertension. The network pharmacology results showed that SRC, HSP90AA1, MAPK1, PIK3R1, AKT1, HRAS, MAPK14, LCK, EGFR and ESR1 used to analyze the changes of rat lung histopathology. Search the Swiss Target Prediction, DrugBank Online, BatMan, Targetnet, SEA, and PharmMapper databases were used to screen for drug targets. Disease targets were retrieved from the GeneCards, OMIM databases. The "drug-target-disease" network was constructed after identification of the two intersection targets. The protein interaction network was constructed and the were the key targets to play a therapeutic role. Molecular docking showed good docking of levosimendan with all the top five core targets with degree values. Conclusions Levosimendan may exert a therapeutic effect on hypoxia-induced pulmonary hypertension through multiple targets.

17.
Chinese Pharmacological Bulletin ; (12): 557-564, 2024.
Article in Chinese | WPRIM | ID: wpr-1013654

ABSTRACT

To explore the mechanism of spleen- were obtained for the treatment of acute-on-chronic livstrengthening and moisture-nourishing liver prescription er failure, and 244 intersecting target genes and 7 core (JPLSYGF) in the treatment of acute-on-chronic liver target genes were screened. Molecular docking showed failure using network pharmacology and the molecular that the core target genes AKT1, SRC, VEGFA, docking. Methods Relying on TCMSP and Gene- STAT3 , EGFR, MAPK3 , HRAS had good affinity with Cards and other databases, the relevant targets of JPL- quercetin, the main active component in the JPLSYGF in the treatment of acute-on-chronic liver failure SYGF, and had strong binding activity. In addition, in were obtained. String and Cytoscape were used to con- vivo tests verified that the JPLSYGF could reduce the struct PPI networks of targets, core targets were expression of HRAS, EGFR, STAT3 , SRC, and VEGscreened out, and DAVID was used for GO function FA, to delay the progression of acute-on-chronic liver annotation and KEGG pathway enrichment analysis. failure. Conclusions JPLSYGF may act on core tar- The main active ingredients of the traditional Chinese gets such as HRAS, EGFR, STAT3, SRC, VEGFA medicine compound formula for JPLSYGF were select- and so on, to achieve the effect of treating acute-oned with a bioavailability OB value of =Э 30% and a chronic liver failure. drug-like DL

18.
Chinese Pharmacological Bulletin ; (12): 371-380, 2024.
Article in Chinese | WPRIM | ID: wpr-1013630

ABSTRACT

Aim To explore the possible mechanism of "component-target-pathway" of Radix Hedysari against target organ damage caused by radiotherapy and chemotherapy, and to verify the " dose-effect" relationship of the main active components. Methods TCMSP, Uniprot, Swiss Target Prediction, GeneCards, Cytoscape, Omicshare and other platforms were used for network pharmacology analysis. Autodock, Pymol and Ligplot were used for molecular docking. The water extract of Radix Hedysari was used for animal experiment verification. The contents of eight main components were determined by HPLC. Results Four active components, eight key targets and four key pathways of Radix Hedysari were identified to resist the damage of target organs caused by radiotherapy and chemotherapy. Molecular docking showed that formononetin and quercetin had good binding activity with HSP90AA1, naringenin and MAPK3, and ursolic acid and TP53. Animal experiments showed that gastrointestinal factors MTL and VIP increased significantly, liver and kidney factors Cr, BUN, AST and ALT decreased significantly, inflammatory factor IL-10 increased significantly and TNF-a decreased significantly. The content of ononm was the highest (2 . 884 8 µg • g "

19.
Chinese Pharmacological Bulletin ; (12): 334-343, 2024.
Article in Chinese | WPRIM | ID: wpr-1013626

ABSTRACT

Aim To predict the mechanism of Fufang Congrong Yizhi Capsules (FCYC) in the treatment of mild cognitive impairment (MCI) by network pharmacology method, and further validate it in combination with cellular experiments. Methods TCMSP, Gene-Cards, OMIM and TTD databases, Chinese Pharmacopoeia and related literature were used to screen the active ingredients of FCYC and the targets of MCI treatment. The TCM-compound-target-disease network and PPI of intersection targets were constructed, and the GO and KEGG analysis were performed by the Ehamb bioinformation platform. GO and KEGG analysis were performed through Yihanbo biological information platform. Cell model of MCI was established by PC-12 injury induced by Aβ

20.
Chinese Pharmacological Bulletin ; (12): 352-362, 2024.
Article in Chinese | WPRIM | ID: wpr-1013623

ABSTRACT

Aim To explore the molecular mechanism of Selaginella moelledorffii Hieron. in the treatment of laryngeal cancer. Methods According to the relevant literature reports, the chemical constituents of S. moellendorffii were obtained, and the active ingredients were screened out through the SwissADME database, and the targets were screened through the PharmMapper database. The laryngeal cancer-related targets were collected by searching OMIM and other databases, and the Venny 2.1.0 online platform was used to obtain the intersection of the two. Protein interaction analysis of the potential targets was performed using the STRNG platform. GO functional analysis and KEGG pathway analysis was carried out using DAVID database. Visual networks were built with Cytoscape 3.8.0 software. Molecular docking was validated by SYBYL-X 2. 0 software. MTT method, Hoechst 33258 staining method and Western blotting were also used for validation. Results At the molecular level, a total of 110 active ingredients of S. moellendorffii and 82 drug targets were screened out, 1,608 targets related to laryngeal cancer, and intersection of 34 targets. GO analysis yielded 135 entries, and KEGG analysis yielded a total of 61 pathways. Molecular docking results showed that the 11 key active ingredients such as 2", 3"-dihydrooch-naflavone wood flavonoids and 4 core target proteins such as MAPK1 had 95. 5% of good docking activity. At the cellular level, SM-BFRE was screened for its strongest inhibitory effect on laryngeal cancer cell proliferation through MTT assay. Furthermore, Hoechst 33258 staining showed that the decrease in Hep-2 cell viability produced by SM-BFRE was related to cell apoptosis. Finally, Western blot verified that SM-BFRE inhibited PI3K/Akt/NF through inhibition- K B/COX-2 pathway to induce apoptosis in laryngeal cancer cells. Conclusions To sum up, it fully reflects the multicomponent, multi-target, and multi-channel synergistic effect of S. moellendorffii in the treatment of laryngeal cancer, and provides a theoretical reference for further elucidation of the mechanism of action of S. moellendorffii in the treatment of laryngeal cancer.

SELECTION OF CITATIONS
SEARCH DETAIL