ABSTRACT
Introducción: La esclerosis lateral amiotrófica (ELA) es la forma más común de enfermedad degenerativa de motoneurona en la edad adulta y es considerada una enfermedad terminal. Por lo mismo, el accionar del fonoaudiólogo debe considerar el respeto a los principios bioéticos básicos para garantizar una asistencia adecuada. Objetivo: Conocer aquellas consideraciones bioéticas relacionadas al manejo y estudio de personas con ELA para luego brindar una aproximación hacia el quehacer fonoaudiológico. Método: Se efectuó una búsqueda bibliográfica en las bases de datos PubMed, Scopus y SciELO. Se filtraron artículos publicados desde 2000 hasta junio de 2023 y fueron seleccionados aquellos que abordaban algún componente bioético en población con ELA. Resultados: Aspectos relacionados al uso del consentimiento informado y a la toma de decisiones compartidas destacaron como elementos esenciales para apoyar la autonomía de las personas. Conclusión: Una correcta comunicación y una toma de decisiones compartida son claves para respetar la autonomía de las personas. A su vez, la estandarización de procedimientos mediante la investigación clínica permitirá aportar al cumplimiento de los principios bioéticos de beneficencia y no maleficencia, indispensables para la práctica profesional.
Introduction: Amyotrophic lateral sclerosis (ALS) is the most common form of degenerative motor neuron disease in adulthood and is considered a terminal disease. For this reason, the actions of the speech therapist must consider respect for basic bioethical principles to guarantee adequate assistance. Objective: To know those bioethical considerations related to the management and study of people with ALS to then provide an approach to speech therapy. Methodology: A bibliographic search was carried out in the PubMed, Scopus, and SciELO databases. Articles published from 2000 to June 2023 were filtered and those that addressed a bioethical component in the population with ALS were selected. Results: Aspects related to the use of informed consent and shared decision-making stood out as essential elements to support people's autonomy. Conclusion: Proper communication and shared decision-making are key to respecting people's autonomy. In turn, the standardization of procedures through clinical research will contribute to compliance with the bioethical principles of beneficence and non-maleficence, essential for professional practice.
ABSTRACT
Arnold Pick described a series of cases with progressive aphasia, behavioural disorders, and dementia. The post-mortem examination revealed on macroscopy, beside diffuse brain atrophy, also circumscribed (lobar) atrophy of the temporal and/or frontal lobes. The histopathology was not provided. Such kind of cases were soon named after the author, being known for a time as 'Pick's disease', coming to constitute a new nosological group. A time later after the original description, Alois Alzheimer and Oskar Fischer completed microscopic examination of similar cases, where the first author found, on silver impregnation, spheric neuronal inclusions, he named 'argentophilic ball' inclusions, while the second one identified complex cortical changes he named 'spongiform cortical wasting', and additionally a type of swollen cell that was named 'ballooned neuron'. Such microscopic changes became the first histopathological markers of this group of diseases.
Arnold Pick descreveu uma série de casos apresentando, de modo progressivo, afasia, transtornos de comportamento e demência. O exame pós-morte revelou à macroscopia, além de atrofia cerebral difusa, também atrofia circunscrita (lobar) dos lobos temporais e/ou frontais. A histopatologia não foi fornecida. Tal tipo de casos foi logo denominado segundo o autor, sendo conhecido por um período como 'doença de Pick', vindo a constituir um novo grupo nosológico. Algum tempo após a discrição original, Alois Alzheimer e Oskar Fischer perfizeram exame microscópio de casos semelhantes, onde o primeiro autor encontrou inclusões neuronais esféricas à impregnação pela prata, que denominou de 'bola argirofílica', enquanto o segundo identificou alterações corticais complexas às quais denominou 'perda cortical espongiforme', além de um tipo de célula tumefeita que chamou de 'neurônio balonizado'. Tais alterações microscópicas tornaram-se os primeiros marcadores histopatológicos desse grupo de doenças.
ABSTRACT
Spinal muscular atrophy (SMA) is a neuromuscular, rare genetic disorder caused due to loss-of-function mutations in the survival motor neuron-1 (SMN1) gene, leading to deficiency of the SMN protein. The severity of the disease phenotype is inversely proportional to the copy number of another gene, SMN2, that differs from SMN1 by a few nucleotides. The current diagnostic methods for SMA include symptom-based diagnosis, biochemical methods like detection of serum creatine kinase, and molecular detection of disease-causing mutations using polymerase chain reaction (PCR), multiplex ligation-dependent probe amplification (MLPA), and exome or next-generation sequencing (NGS). Along with detection of the disease-causing mutation in the SMN1 gene, it is crucial to identify the copy number of the SMN2 gene, which is a disease modifier. Therapeutic options like gene therapy, antisense therapy, and small molecules are available for SMA, but, the costs are prohibitively high. This review discusses the prevalence, diagnosis, available therapeutic options for SMA, and their clinical trials in the Indian context, and highlights the need for measures to make indigenous diagnostic and therapeutic interventions.
ABSTRACT
BACKGROUND:The effect of electroacupuncture on the proliferation and differentiation of hippocampal oligodendrocytes in model mice with Alzheimer's disease remains poorly understood while demyelinating reaction related to oligodendrocytes is a common pathological reaction of Alzheimer's disease. OBJECTIVE:To investigate the effects and mechanism of electroacupuncture stimulation of"Baihui"(GV 20),"Fengfu"(GV 16)and bilateral"Shenshu"(BL 23)in Alzheimer's disease model mice on the proliferation and differentiation of endogenous neural stem cells to neurons and oligodendrocytes. METHODS:Forty 6-week-old SPF APP/PS1 transgenic male Alzheimer's disease model mice were randomly divided into electroacupuncture group(n=20)and Alzheimer's disease model group(n=20).Healthy male C57BL/6J mice of the same age were used as normal controls(n=20).The mice in the electroacupuncture group received electroacupuncture at"Baihui"(GV 20),"Fengfu"(GV 16)and bilateral"Shenshu"(BL 23)for 16 weeks(20 minutes/day and one day off a week).After electroacupuncture,Morris water maze was used to detect the changes of learning and memory function.Immunohistochemistry was utilized to detect hippocampal dentate gyrus β-amyloid senile plaques.The expression of BrdU/NeuN and BrdU/GALC in the hippocampal dentate gyrus was detected by immunofluorescence double labeling.Western blot assay was used to detect the expression levels of neuron specific protein Nestin and oligodendrocyte specific protein GALC in the hippocampus.mRNA and protein levels of Notch1 and Hes1 in the hippocampus were detected by real-time fluorescence quantitative PCR and western blot assay. RESULTS AND CONCLUSION:(1)Compared with the normal control group,the ability of learning and memory in the Alzheimer's disease model group decreased significantly;hippocampal dentate gyrus β-amyloid senile plaques increased significantly(P<0.01);the expression of GALC and Nestin in the hippocampus decreased significantly(P<0.01,P<0.05).(2)Compared with the Alzheimer's disease model group,the learning and memory ability of the electroacupuncture group was significantly increased;β-amyloid senile plaque in the hippocampal dentate gyrus decreased significantly(P<0.01).BrdU/NeuN double labeled positive cells in the hippocampal dentate gyrus and Nestin protein expression in the hippocampus increased significantly(P<0.01,P<0.05);GALC expression in hippocampus increased significantly(P<0.01).The mRNA and protein levels of Notch1 in the hippocampus were significantly increased(P<0.05,P<0.01).The mRNA and protein levels of Hes1 in the hippocampus decreased significantly(P<0.05).(3)These findings indicate that electroacupuncture at"Baihui"(GV 20),"Fengfu"(GV 16)and bilateral"Shenshu"(BL 23)of the Alzheimer's disease model infant mice can promote the proliferation and differentiation of endogenous neural stem cells to neurons and oligodendrocytes,which may be regulated through the Notch1/Hes1 pathway.
ABSTRACT
BACKGROUND:Neuronal necroptosis induced by intracerebral hemorrhage is an important cause of secondary brain injury.Activating transcription factor 4(ATF4)is a member of the transcription activator family,which plays an important role in secondary brain injury after intracerebral hemorrhage.However,the mechanism of ATF4 in neuronal necroptosis after intracerebral hemorrhage remains unclear. OBJECTIVE:To explore the effect of ATF4 silencing(ATF4 small interfering RNA,ATF4 siRNA)on neuronal necroptosis after intracerebral hemorrhage. METHODS:The HT-22 mouse hippocampal neuron cell line and the BV-2 mouse microglial cell line were co-cultured,and hemin was used to mimic an in vitro model of intracerebral hemorrhage.A gradient concentration of hemin was used to treat cells and was set in the interval of 0-100 μmol/L,and the cell viability was evaluated by MTT assay after 24 hours of administration of hemin.The cells were divided into four groups:the blank control group without any intervention;the control group was treated with hemin(50 μmol/L),and the other two groups were treated with negative control small interfering RNA(NC siRNA)and ATF4 small interfering RNA(ATF4 siRNA)48 hours before administration of hemin.After the cells were treated with hemin(50 μmol/L)for 24 hours,PI/Hoechst staining was used to detect neuronal necroptosis.Western blot assay was used to detect the protein expression of ATF4,receptor-interacting protein 3(RIP3),and mixed lineage kinase domain-like protein(MLKL),and double immunofluorescent staining was located in neurons to observe the level of neuronal necroptosis and the regulatory effect of ATF4 on it. RESULTS AND CONCLUSION:(1)50 μmol/L of hemin could induce neuronal necroptosis to a greater extent.(2)The number of PI+/Hoechst+ cells in the control group and NC siRNA group was higher than that in the blank control group(P<0.000 1).The number of PI+/Hoechst+ cells in the ATF4 siRNA group was lower than that in the control group(P<0.000 1).(3)Compared with the control group,the ATF4 siRNA group not only inhibited the expression of ATF4 protein(P<0.001),but also inhibited the expression of RIP3 and MLKL protein(P<0.001).(4)Through double immunofluorescent staining,compared with the control group,the protein expression of RIP3 and MLKL was significantly reduced in the ATF4 siRNA group(P<0.000 1).(5)The results show that the silencing of the ATF4 gene can directly or indirectly inhibit the expression of genes related to neuronal necroptosis after intracerebral hemorrhage,and play a vital role in alleviating secondary brain injury.
ABSTRACT
BACKGROUND:Previous studies have demonstrated that icariin has important roles in promoting bone formation and inhibiting bone resorption,but its effects on osteoporosis-mediated bone pain have not been reported. OBJECTIVE:To investigate the possible mechanism of icariin alleviating bone pain in postmenopausal senile osteoporosis. METHODS:(1)Animal experiment:200 C57BL/6 mice were randomly divided into 4 groups:sham group(n=50),model group(n=50),icariin treatment group(n=50),and carbonic anhydrase Ⅱ inhibitor(Brinzolamide)treatment group(n=50).Ovariectomy was performed on C57BL/6 mice to establish a postmenopausal osteoporosis model in all groups except the sham group.The icariin group was given icariin on the second day after modeling,and pain behavior tests(Von Frey,Hot Plate,and Tail Flick tests)were performed every 2 weeks for 20 weeks.After sampling,bone mass was detected by microCT,osteoclast activity was detected by hematoxylin-eosin and tartrate-resistant acid phosphatase staining,and neuronal morphology and related ion channel expression were detected by tissue immunofluorescence staining.(2)Cell experiment:Osteoclast precursor cells derived from mouse bone marrow were extracted and induced to differentiate into osteoclasts using the RANKL/M-CSF system in vitro and supplemented with icariin of different concentrations(1 and 10 μmol/L).Tartrate-resistant acid phosphatase staining was used to detect osteoclast differentiation,ghost pen cyclic peptide staining was used to detect osteoclast actin ring,bone plate absorption assay was used to detect osteoclast osteophagy function,pH value of the system was detected by pH meter,and expression of osteoclast differentiation-related proteins was detected by western blot.In addition,mouse dorsal root ganglion-derived nerve cells were extracted and treated with icariin.Cell counting kit-8 was used to detect neuronal activity and CGRP staining was used to detect neuronal morphology. RESULTS AND CONCLUSION:Compared with the model group,the icariin treatment group had higher bone mineral density,fewer tartrate-resistant acid phosphatase-positive osteoclasts in bone tissue,decreased neuronal activity,and decreased neuronal transient receptor potential vanilloid subtype 1 channel and carbonic anhydrase Ⅱ expression.Behavioral results showed that the icariin treatment group was less sensitive to pain than the model group.Icariin inhibited osteoclast differentiation and bone phagocytosis in vitro.Icariin enhanced the activity of dorsal root ganglion neurons and inhibited the expression of calcitonin gene-related peptide and transient receptor potential vanilloid subtype 1 channels in dorsal root ganglia in a relatively non-toxic pH range.To conclude,icariin alleviates bone pain caused by postmenopausal osteoporosis by regulating the acidic microenvironment through its effect on osteoclasts.
ABSTRACT
Objective:To explore the effect of NOD-like receptor thermal protein 3 ( NLRP3) knockout in γ-aminobutyric acid (GABA)-ergic neurons in the hippocampal CA1 area on improving cognitive dysfunction in mice after traumatic brain injury (TBI). Methods:Forty-eight healthy male NLRP3 flox/flox mice weighing 25-28 g were randomly divided into 4 groups ( n=12): sham-operated+control virus group (SV group), sham-operated+ NLRP3 specific knockout group (SG group), TBI+control virus group (TV group), TBI+ NLRP3 specific knockout group (TG group). TBI in the TV and TG groups was established by free-fall method, while surgical procedures such as scalp incision and cranial window opening without impact were given to the SV and SG groups. Adenovirus was injected into the hippocampal CA1 area of SG and TG groups 21 d before TBI to induce NLRP3 specific knockout in GABA-ergic neurons in the hippocampal CA1 area; empty virus was injected into the CA1 area of SV and TV groups. Cognitive function was evaluated using novel object recognition test 30 and 31 d after TBI, and learning and memory functions were assessed using Morris water maze test 32-36 d after TBI. Field potentials in the hippocampal CA1 area were recorded during novel object recognition 31 d after TBI. After behavioral tests, these mice were sacrificed. Immunofluorescent staining was used to detect the fluorescent intensity of microtubule-associated protein2 (MAP2), glutamic acid decarboxylase 67 (GAD67), and postsynaptic density protein 95 (PSD95) in the hippocampal CA1 area, as well as percentage of pyroptosis-associated inflammatory factor interleukin-18 (IL-18)/GAD67 double-positive neurons in total GAD67 positive neurons. Results:Compared with the SV and SG groups, the TV and TG groups had decreased novel object recognition index, decreased number of platform crossings during the experimental period, increased escape latency on day 3 and day 4 of the training period in Morris water maze test, decreased θ and γ oscillation power in the hippocampal CA1 area during novel object recognition, decreased fluorescent intensity of MAP2, GAD67, and PSD95 in the hippocampal CA1 area, increased percentage of IL-18/GAD67 double-positive neurons, with significant differences ( P<0.05). Compared with the TV group, the TG group had increased novel object recognition index, increased number of platform crossings in Morris water maze test, decreased escape latency during the training period, increased θ and γ oscillation power in the hippocampal CA1 area during novel object recognition, increased fluorescence intensity of MAP2, GAD67, and PSD95 in the hippocampal CA1 area, decreased percentage of IL-18/GAD67 double-positive neurons, with significant differences ( P<0.05). Conclusion:Specific inhibition of NLRP3 expression in GABA-ergic neurons in the hippocampal CA1 area can improve cognitive dysfunction in mice after TBI, whose mechanism may be related to inhibited GABA-ergic neuronal pyroptosis in the hippocampal CA1 area.
ABSTRACT
Cerebral ischemic stroke is an acute cerebrovascular disease caused by cerebral vascular occlusion, and it is associated with high incidence, disability, and mortality rates. Studies have found that excessive or insufficient autophagy can lead to cellular damage. Autophagy consists of autophagosome formation and maturation, autophagosome-lysosome fusion, degradation and clearance of autophagic substrates within autolysosomes, and these processes collectively constitute autophagic flux. Research has revealed that cerebral ischemia can induce impaired fusion between autophagosomes and lysosomes, resulting in autophagic flux impairment. Intracellular membrane fusion is mediated by three core components: N-ethylmaleimide sensitive factor (NSF) ATPase, soluble NSF attachment protein (SNAP), and soluble NSF attachment protein receptors (SNAREs). SNAREs, after mediating fusion between autophagosomes and lysosomes, remain in an inactive complex state on the autolysosomal membrane, requiring NSF reactivation into monomers to perform subsequent rounds of membrane fusion-mediated functions. NSF is the sole ATPase capable of reactivating SNAREs. Recent studies have shown that cerebral ischemia significantly inhibits NSF ATPase activity, reducing its reactivation of SNAREs. This may be a pathological mechanism for impaired fusion between autophagosomes and lysosomes, leading to neuronal autophagic flux impairment. This article discusses the pathological mechanisms of NSF ATPase inactivation, including SNAREs dysregulation, impaired fusion between autophagosomes and lysosomes, and insufficient transport of proteolytic enzymes to lysosomes, and explores approaches to improve neuronal autophagic flux through NSF ATPase reactivation. It provides references for stroke treatment improvement and points out directions for further research.
ABSTRACT
Social behavior is extremely important for the physical and mental health of individuals, their growth and development, and for social development. Social behavioral disorders have become a typical clinical representation of a variety of psychiatric disorders and have serious adverse effects on the development of individuals. The prefrontal cortex, as one of the key areas responsible for social behavior, involves in many advanced brain functions such as social behavior, emotion, and decision-making. The neural activity of prefrontal cortex has a major impact on the performance of social behavior. Numerous studies demonstrate that neurons and glial cells can regulate certain social behaviors by themselves or the interaction which we called neural microcircuits; and the collaboration with other brain regions also regulates different types of social behaviors. The prefrontal cortex (PFC)-thalamus projections mainly influence social dominance and social preference; the PFC-amygdala projections play a key role in fear behavior, emotional behavior, social exploration, and social identification; and the PFC-nucleus accumbens projections mainly involve social preference, social memory, social cognition, and spatial-social associative learning. Based on the above neural mechanism, many studies have focused on applying the non-invasive neurostimulation to social deficit-related symptoms, including transcranial magnetic stimulation (TMS), transcranial electrical stimulation (TES) and focused ultrasound stimulation (FUS). Our previous study also investigated that repetitive transcranial magnetic stimulation can improve the social behavior of mice and low-intensity focused ultrasound ameliorated the social avoidance behavior of mice by enhancing neuronal activity in the prefrontal cortex. In this review, we summarize the relationship between neurons, glial cells, brain projection and social behavior in the prefrontal cortex, and systematically show the role of the prefrontal cortex in the regulation of social behavior. We hope our summarization will provide a reference for the neural mechanism and effective treatment of social disorders.
ABSTRACT
Exosome is a kind of extracellular vesicles secreted by cells to the outside. Biogenesis mainly involves two invaginations of the cytoplasmic membrane, the formation of multivesicular bodies, and the release of exosomes. Exosomes have abundant and diverse inclusions—including landmark membrane proteins, soluble proteins, various RNA molecules and DNA fragments, etc. Cells can achieve intercellular signal communication by secreting and receiving exosomes. Through interaction of ligand molecules on the exosome membrane with receptors on the surface of other cytoplasmic membranes, exosomes can activate cell signal transduction or fuse with the cell membrane to release its contents into the cytoplasm to exert regulatory functions. In the central nervous system, exosomes secreted by neurons and various glial cells can mediate wired synaptic signal transmission, but mainly play a role similar to neuromodulator by way of volume transmission. In this paper, the biogenesis of exosomes and important functional components are described in detail, and the characteristics of neural exosomes in the biogenesis, content sorting and controlled release are compared with those of synaptic vesicles. We further review the research progress on the physiological functions of neural exosomes on the central nervous system and their roles in the occurrence and development of neurodegenerative diseases and major depressive disorder. We also prospect the application of exosomes in the early diagnosis and targeted therapy of nervous system diseases.
ABSTRACT
Retrograde adeno-associated viruses (AAVs) are capable of infecting the axons of projection neurons and serve as a powerful tool for the anatomical and functional characterization of neural networks. However, few retrograde AAV capsids have been shown to offer access to cortical projection neurons across different species and enable the manipulation of neural function in non-human primates (NHPs). Here, we report the development of a novel retrograde AAV capsid, AAV-DJ8R, which efficiently labeled cortical projection neurons after local administration into the striatum of mice and macaques. In addition, intrastriatally injected AAV-DJ8R mediated opsin expression in the mouse motor cortex and induced robust behavioral alterations. Moreover, AAV-DJ8R markedly increased motor cortical neuron firing upon optogenetic light stimulation after viral delivery into the macaque putamen. These data demonstrate the usefulness of AAV-DJ8R as an efficient retrograde tracer for cortical projection neurons in rodents and NHPs and indicate its suitability for use in conducting functional interrogations.
Subject(s)
Animals , Haplorhini , Axons , Motor Neurons , Interneurons , Macaca , Dependovirus/genetics , Genetic VectorsABSTRACT
Neuronomodulation refers to the modulation of neural conduction and synaptic transmission (i.e., the conduction process involved in synaptic transmission) of excitable neurons via changes in the membrane potential in response to chemical substances, from spillover neurotransmitters to paracrine or endocrine hormones circulating in the blood. Neuronomodulation can be direct or indirect, depending on the transduction pathways from the ligand binding site to the ion pore, either on the same molecule, i.e. the ion channel, or through an intermediate step on different molecules. The major players in direct neuronomodulation are ligand-gated or voltage-gated ion channels. The key process of direct neuronomodulation is the binding and chemoactivation of ligand-gated or voltage-gated ion channels, either orthosterically or allosterically, by various ligands. Indirect neuronomodulation involves metabotropic receptor-mediated slow potentials, where steroid hormones, cytokines, and chemokines can implement these actions. Elucidating neuronomodulation is of great significance for understanding the physiological mechanisms of brain function, and the occurrence and treatment of diseases.
Subject(s)
Ligands , Neurons/metabolism , Synaptic Transmission/physiology , Ion Channels/metabolism , Hormones/metabolismABSTRACT
BACKGROUND:It has been shown that neural stem cells can differentiate into neurons,astrocytes,and oligodendrocytes.Mesenchymal stem cells-derived extracellular vesicles have also been shown to cross the blood-brain barrier to reach sites of central nervous injury and promote neural repair.However,it is not clear whether neuron-derived extracellular vesicles promote the differentiation of neural stem cells in a direction that is beneficial for neurogenesis. OBJECTIVE:To investigate whether neuron-derived extracellular vesicles facilitate neural stem cell differentiation towards neurogenesis. METHODS:Neurons and neural stem cells were extracted from neonatal SD rat cerebral cortex by trypsin digestion.Cell supernatants of neurons were collected.Neuron-derived extracellular vesicles were extracted.Neural stem cells cultured for 10 days were co-cultured with neuron-derived extracellular vesicles or PBS for 7 days.Immunoblotting,immunofluorescence,and RT-qPCR were used to detect proteins specifically expressed by neurons,neural stem cells,oligodendrocytes,and astrocytes. RESULTS AND CONCLUSION:The neural stem cells co-cultured with neuron-derived extracellular vesicles showed high expression of neuron-specific proteins and oligodendrocyte-specific proteins including β3-tubulin,neurofilament 200 and myelin basic protein,and low expression of astrocyte-specific protein glial fibrillary acidic protein.These results suggest that neuron-derived extracellular vesicles can promote the differentiation of neural stem cells into neurons and oligodendrocytes and prevent the differentiation of neural stem cells into astrocytes.
ABSTRACT
BACKGROUND:Amyotrophic lateral sclerosis is a progressive neurodegenerative disease,which often leads to the death of neurons in the brain and spinal cord.The pathogenesis of amyotrophic lateral sclerosis is extremely complex,with high refractory rate and mortality rate.There are only two kinds of drugs for its treatment,so it is urgent to develop new treatment methods to improve the prognosis of patients. OBJECTIVE:To review the mechanism of Chinese medicine and mesenchymal stem cells regulating the immune response in the treatment of amyotrophic lateral sclerosis. METHODS:"Traditional Chinese medicine,medical stem cells,ALS,immune response"were Chinese and English search terms.Articles were retrieved from WanFang,CNKI,PubMed,Web of Science and other databases from 2010 to 2023.Finally,69 articles were included for review. RESULTS AND CONCLUSION:(1)The article summarizes in detail the five mechanisms of traditional Chinese medicine regulating the immune response in the treatment of amyotrophic lateral sclerosis:mainly including the promotion of expression of closed zone protein-1 and closed protein-5 by traditional Chinese medicine such as borneol and astragaloside IV to rebuild the integrity of the blood central nervous system barrier.Fufangteng Mixture can regulate the receptor molecules on the surface of the natural killer cells to inhibit their autotoxicity.The complement system factors such as Scutellaria barbata and patchouli can inhibit their abnormal activation.Tripterygium wilfordii and Uncaria rhynchophylla inhibit the activation of microglia by mediating the production of extracellular signal-regulated kinase 1/2 attenuated inducible nitric oxide synthase.Zuogui Pill and Trichosanthes kirilowii Root promote the expression of interleukin-10 and regulate T cells to improve the immune environment.(2)Through existing research,five mechanisms of mesenchymal stem cells regulating the immune response in the treatment of amyotrophic lateral sclerosis have been summarized,mainly including reducing the expression of aquaporin 4 and reducing endothelial nitric oxide synthase signal transduction to repair the integrity of the immune barrier;releasing indoleamine 2,3-dioxygenase,prostaglandin E2 and other factors to resist natural killer cell toxicity;secretion factor H interferes with the activity of invertase and inhibits abnormal activation of the complement system;regulating the CX3CL1/CX3CR1 system axis or secreting transforming growth factors β,which can change the phenotype of microglia and inhibit its activity by other ways;increasing the expression of interleukin-10 or activating the STATS phosphorylation pathway to restore T cell function.(3)At present,there are few studies on the combination of traditional Chinese medicine and mesenchymal stem cells in the treatment of amyotrophic lateral sclerosis.Relevant research reports have shown that Jiweiling Injection can promote stem cell proliferation and differentiation and that Buyang Huanwu decoction combined with bone marrow mesenchymal stem cells can significantly improve the integrity of the blood-brain barrier.In the future,further exploration is needed to explore the synergistic treatment effect of both on refractory amyotrophic lateral sclerosis.
ABSTRACT
BACKGROUND:Previous studies have successfully constructed erythropoietin-overexpressed umbilical cord mesenchymal stem cells.It was found that the apoptosis of ischemic and hypoxic human neuroblastoma cell line(SH-SY5Y)was significantly reduced by erythropoietin-overexpressed umbilical cord mesenchymal stem cells. OBJECTIVE:To explore the possible neuroprotective mechanisms of erythropoietin-overexpressed umbilical cord mesenchymal stem cells against ischemic-hypoxic SH-SY5Y and their associated epigenetic mechanisms. METHODS:Oxygen-glucose deprivation was applied to ischemia-hypoxia-induced SH-SY5Y cell injury,and multifactorial assays were applied to detect the expression levels of inflammatory factors in the cells before and after hypoxia and co-culture,respectively,with mesenchymal stem cells,as well as lentiviral-transfected null-loaded plasmids of the negative control mesenchymal stem cells and erythropoietin-overexpressed umbilical cord mesenchymal stem cells.The expression levels of supernatant inflammatory factors were detected by multifactor assay after co-culture.Proteomics was used to detect the differentially expressed proteins of negative control mesenchymal stem cells and erythropoietin-overexpressed umbilical cord mesenchymal stem cells.Cleavage under targets and tagmentation sequencing was applied to detect genomic H3K4me2 modification,and joint analysis was conducted with RNA-sequencing.Lentiviral vector infection was applied to construct the stable knockdown of REST in SH-SY5Y cells.qRT-PCR and western blot assay were performed to detect the expression level of REST.The apoptosis was detected by flow cytometry after co-culture of oxygen-glucose deprivation treatment with erythropoietin-overexpressed umbilical cord mesenchymal stem cells.The expression difference of H3K36me3 group proteins was detected by western blot assay,and transcriptome sequencing was performed to analyze the differentially expressed genes. RESULTS AND CONCLUSION:(1)Compared with the control group,monocyte chemotactic protein 1,interleukin-6,interleukin-18,and interleukin-1 beta,interferon α2,and interleukin-23 levels significantly increased in the cerebrospinal fluid supernatant of patients with ischemic-hypoxic encephalopathy(P<0.01).(2)After co-culturing SH-SY5Y cells with erythropoietin-overexpressed umbilical cord mesenchymal stem cells under ischemia and hypoxia,the expression levels of monocyte chemotactic protein 1 and interleukin-6 were significantly reduced.(3)Analysis of protein network interactions revealed significant downregulation of monocyte chemotactic protein 1,interleukin-6 related regulatory proteins CXCL1 and BGN.(4)Transcriptome sequencing analysis found that pro-inflammatory genes were down-regulated,and functional enrichment of histone modifications,and the expression of transcription factors REST and TET3 significantly up-regulated in the erythropoietin-overexpressed umbilical cord mesenchymal stem cell group compared with the negative control mesenchymal stem cell group.(5)Combined analysis of transcriptome sequencing and cleavage under targets and tagmentation revealed changes in epigenetic levels as well as significant activation of the promoter regions of transcription factors REST and TET3.(6)Stable knockdown REST in SH-SY5Y cells was successfully constructed;the transcript levels of REST mRNA and protein expression were both decreased.(7)After the REST knockdown SH-SY5Y cells were co-cultured with erythropoietin-overexpressed umbilical cord mesenchymal stem cells,apoptosis was significantly increased and H3K36me3 expression was significantly decreased.Transcriptome sequencing results showed that the expression of inflammation-related genes Aldh1l2 and Cth,as well as apoptosis-suppressor genes Mapk8ip1 and Sod2 was reduced at mRNA transcription level(P<0.01).(8)It is concluded that erythropoietin-overexpressed umbilical cord mesenchymal stem cells activated the expression of REST and TET3 by altering the kurtosis of H3K4me2 and upregulated the modification level of H3K36me3,which in turn regulated the expression of inflammation-related genes Aldh1l2 and Cth,as well as apoptosis-suppressor genes Mapk8ip1 and Sod2,and facilitated neuronal survival.
ABSTRACT
Objective To establish a low density, high purity and high stability in vitro culture method of primary hippocampal neurons of fetal rats by co-culturing hippocampal and cortical cells, so as to obtain higher purity and better vitality of primary hippocampal neurons disease. Methods The fetal rat hippocampal tissue was isolated from 16-18 days pregnant SD rats, then cut and digested by 0.125% trypsin. The obtained cell suspension was filtered by 200 mesh cell sieve, and then the obtained cell suspensions were then inoculated into the inner layer and outer ring of the culture plate in a surrounding form. They were co-cultured in DMEM/F12 medium containing 10% horse serum. After 4-6 hours of cell adhesion, the culture medium was changed to maintenance medium (Neurobasal+2% B27+0.5 mmol/L glutamine). Then the cell viability was detected with CCK-8 kit and the purity of hippocampal neurons was detected by immunofluorescent staining. Results Hippocampal neurons grew well and formed crisscross neural networks after 5 days. And it could survive for 3 weeks. The purity of hippocampal neurons was up to 98%. Conclusion The method of co-culturing hippocampal and cortical cells can obtain high-purity, high activity, high survival rate, and high stability primary hippocampal neurons from fetal rats, which can provide certain experimental conditions for the study of hippocampal neuron related diseases in the nervous system and is worthy of promotion and application.
ABSTRACT
Objective:To explore the therapeutic effect of dual microcatheter technology on acute intracranial wide necked aneurysms and its impact on serum levels of matrix metalloproteinase-9 (MMP-9), neuron specific enolase (NSE), and central nervous system specific protein (S100β).Methods:A prospective study was conducted on 80 patients with acute intracranial wide neck aneurysms admitted to the Affiliated Suzhou Hospital of Anhui Medical University from January 2020 to March 2023. They were randomly divided into an observation group and a control group, with 40 cases in each group, using a random number table method. The control group patients were treated with stent assisted spring coil intervention embolization, while the observation group patients were treated with dual microcatheter technology intravascular intervention embolization. We compared the perioperative conditions of two groups, including changes in serum MMP-9, NSE, and S100β, as well as short-term prognosis, changes in the National Institutes of Health Stroke Scale (NIHSS) score, Barthel Index (BI) score, and incidence of complications.Results:The observation group had shorter surgical and hospital stay than the control group, and the difference was statistically significant (all P<0.05); At 7 days after surgery, the serum levels of MMP-9, NSE, and S100β in the observation group were lower than those in the control group, and the differences were statistically significant (all P<0.05); The short-term good prognosis rate of the observation group was 55.00%(22/40), significantly higher than the control group′s 32.50%(13/40), and the difference was statistically significant (all P<0.05); At one month after surgery, the NIHSS score in the observation group was lower than that in the control group, while the BI score was higher than that in the control group, with statistically significant differences (all P<0.05); There was no statistically significant difference in the total incidence of postoperative complications between the two groups ( P>0.05). Conclusions:The dual microcatheter technique has a significant therapeutic effect on acute intracranial wide neck aneurysms, reducing the increase in serum MMP-9, NSE, and S100β levels after surgery, promoting postoperative recovery, and is worthy of clinical promotion.
ABSTRACT
Objective:To design and implement a registration system based on Elasticsearch,so as to solve the problems of the conventional registration system included single method of appointment and registration,and one-sidedness information of search registration platform,and to meet the growing needs of patients for diversified and intelligent medical registration and treatment.Methods:The browser/server(B/S)architecture was used to implement the design of registration system.The front-end used the neuron organic object description language(NOODL)language to render the interface,and implemented interaction between function methods and interface data through Typescript.The Elasticsearch search engine implemented high efficient search functions.The back-end processed the requirements of data through the(edge-based cloud object storage)ECOS system,and stored business data in the MySQL database.The system included a three-layer architecture with application layer,service layer and storage layer,which can realize a series of functions such as login and registration,search for appointments,link appointments,scan code for appointments,and setting appointment information by doctors.Results:The registration system based on Elasticsearch can realize multiple methods of appointment registration such as online search appointment,exclusive link appointment of hospital,appointment by scanning code,etc.,which was suitable to multiple platforms such as Web and mobile device.It has been applied in many overseas medical institutions.As of June 2023,the system possessed 219 doctors,and had serviced for 19,903 patients,and had completed 62,737 appointments,which saved a lot of time for patients to seek medical treatment,and improved operation efficiency of hospital.Conclusion:The registration system based on Elasticsearch can meet the diversified and intelligent needs of patients for medical treatment,which can provide comprehensive,accurate and intelligent services of appointment and treatment for patients,and can effectively improve the efficiency of appointment and treatment.
ABSTRACT
Objective:To discuss the protective effect of gingerone on the hippocampal neuron HT22 cells after oxygen-glucose deprivation/reoxygenation(OGD/R),and to clarify the related mechanism.Methods:The HT22 cells were cultured,and the OGD/R cell injury model was established by setting the gradient of OGD/R time.The HT22 cells were divided into control group,OGD/R group,OGD/R+ 1 μmol·L-1 gingerone group,OGD/R + 10 μmol·L-1 gingerone group,OGD/R+100 μmol·L-1 gingerone group,and OGD/R+0.2%dimethyl sulfoxide(DMSO)group.The viability of the cells in various groups was detected by CCK-8 assay;the survival rates of the cells in various groups were calculated to determine the optimal drug concentration of gingerone.The cells were divided into control,OGD/R group,OGD/R+ gingerone,and OGD/R+gingerone+nuclear factor erythroid-2-related factor 2(Nrf2)inhibitor(ML385)groups.The cells in OGD/R + gingerone group were treated with gingerone for 4 h before OGD treatment for 8 h followed by reoxygenation for 8 h,and the cells in OGD/R+gingerone+ ML385 group were treated with 10 μmol·L-1 ML385 for 6 h before gingerone treatment.The viability of the cells in various groups was detected by CCK-8 assay;the expression levels of Nrf2,heme oxygenase-1(HO-1),B-cell lymphoma-2(Bcl-2),and Bcl-2-associated X protein(Bax)proteins in the cells in various groups were detected by Western blotting method;the activity of superoxide dismutase(SOD)and the level of malondialdehyde(MDA)in the cell culture supernatant in various groups were detected by enzyme-linked immunosorbent assay(ELISA)method.Results:Compared with control group,the survival rate of the HT22 cells was below 50%after treated with OGD for 8 h and reoxygenation for 8 h,so the HT22 cell OGD/R model was established by treated with OGD for 8 h and reoxygenation for 8 h.Compared with OGD/R group,the survival rates of the cells in OGD/R+different doses of gingerone groups were increased to various extents,and the survival rate of the cells in OGD/R+ 100 μmol·L-1 gingerone group was significantly increased(P<0.01);so 100 μmol·L-1 gingerone was used for the subsequent experiment.Compared with control group,the viability of the cells in OGD/R group was significantly decreased(P<0.01),and the expression levels of Nrf2,HO-1,and Bax proteins in the cells were significantly increased(P<0.01),while the expression level of Bcl-2 protein in the cells was significantly decreased(P<0.05),and the SOD activity in the cell culture supernatant was significantly decreased(P<0.01),and the level of MDA was significantly increased(P<0.01);compared with OGD/R group,the viability of the cells in OGD/R + gingerone group was significantly increased(P<0.01),and the expression levels of Nrf2,HO-1,and Bcl-2 proteins in the cells were significantly increased(P<0.05 or P<0.01),while the expression level of Bax protein in the cells was decreased(P<0.05),the SOD activity in the cell culture supernatant was significantly increased(P<0.01),and the level of MDA was significantly decreased(P<0.01);compared with OGD/R + gingerone group,the viability of the cells in OGD/R + gingerone + ML385 group was significantly decreased(P<0.01),and the expression levels of Nrf2,HO-1,and Bcl-2 proteins were significantly decreased(P<0.01),while the expression level of Bax protein in the cells was significantly increased(P<0.01),the SOD activity in the cell culture supernatant was significantly decreased(P<0.01),and the level of MDA was significantly increased(P<0.05).Conclusion:Gingerone alleviates the oxidative stress damage,and thereby plays an inhibiory effect on the apoptosis of the HT22 neurons by activating the Nrf2/HO-1 signaling pathway after OGD/R.
ABSTRACT
Objective To explore the clinical value of chitinase 3-like protein 1(CHI3L1)in the diagnosis of lung cancer.Methods A total of 106 patients with lung cancer admitted to the North District of the First Affiliated Hospital of Anhui Medical University from January to December 2022 were selected as the lung cancer group,76 patients with benign lung disease admitted during the same period were selected as the benign lung disease group and 20 healthy subjects were selected as the control group.Enzyme-linked immunosorbent assay was used to detect CHI3L1 levels.The levels of carcinoembryonic antigen(CEA),neuron-specific eno-lase(NSE),cytokeratin-19 fragment(CYFRA21-1),squamous cell carcinoma antigen(SCC-Ag)and gastrin-releasing peptide precursor(ProGRP)were determined by chemiluminescence assay.Results The levels of CEA,ProGRP,NSE,CYFRA21-1 and CHI3L1 in lung cancer group were significantly higher than those in control group,and the differences were statistically significant(P<0.05).Serum CEA in lung cancer group was significantly higher than that in benign lung disease group,while serum CHI3L1 was significantly lower than that in benign lung disease group,with statistical significance(P<0.05).Serum levels of NSE and Pro-GRP were higher in patients with small cell lung cancer than those with lung adenocarcinoma and lung squa-mous cell carcinoma(P<0.05).Compared with patients with lung adenocarcinoma and small cell lung canc-er,the serum CYFRA21-1 level in patients with lung squamous cell carcinoma was higher,and the difference was statistically significant(P<0.05).Compared with the control group,the serum levels of NSE,CY-FRA21-1 and CHI3L1 in patients with stage Ⅰ to Ⅱ lung cancer group were significantly increased,and the difference was statistically significant(P<0.05).Multivariate Logistic stepwise regression analysis was per-formed for CEA,ProGRP,NSE,CYFRA21-1 and CHI3L1,and it was found that NSE and CHI3L1 had an effect on the occurrence of lung cancer.The sensitivity,specificity and area under the curve of CHI3L1 and NSE were 96.2%,90.0%and 0.965 respectively.Conclusion Serum CHI3L1 can assist in the diagnosis and differential diagnosis of lung cancer.The combined detection of CHI3L1 and NSE is helpful for the early de-tection of lung cancer and has good clinical application value.