Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Biotechnology ; (12): 3936-3947, 2023.
Article in Chinese | WPRIM | ID: wpr-1008004

ABSTRACT

Traditional pig breeding has a long cycle and high cost, and there is an urgent need to use new technologies to revitalize the pig breeding industry. The recently emerged CRISPR/Cas9 genome editing technique shows great potential in pig genetic improvement, and has since become a research hotspot. Base editor is a new base editing technology developed based on the CRISPR/Cas9 system, which can achieve targeted mutation of a single base. CRISPR/Cas9 technology is easy to operate and simple to design, but it can lead to DNA double strand breaks, unstable gene structures, and random insertion and deletion of genes, which greatly restricts the application of this technique. Different from CRISPR/Cas9 technique, the single base editing technique does not produce double strand breaks. Therefore, it has higher accuracy and safety for genome editing, and is expected to advance the pig genetic breeding applications. This review summarized the working principle and shortcomings of CRISPR/Cas9 technique, the development and advantages of single base editing, the principles and application characteristics of different base editors and their applications in pig genetic improvement, with the aim to facilitate genome editing-assisted genetic breeding of pig.


Subject(s)
Animals , Swine/genetics , Gene Editing , CRISPR-Cas Systems/genetics , DNA Breaks, Double-Stranded
2.
Chinese Journal of Biotechnology ; (12): 204-216, 2023.
Article in Chinese | WPRIM | ID: wpr-970369

ABSTRACT

In this study, a single base editing system was used to edit the FecB and GDF9 gene to achieve a targeted site mutation from A to G and from C to T in Ouler Tibetan sheep fibroblasts, and to test its editing efficiency. Firstly, we designed and synthesized sgRNA sequences targeting FecB and GDF9 genes of Ouler Tibetan sheep, followed by connection to epi-ABEmax and epi-BE4max plasmids to construct vectors and electrotransfer into Ouler Tibetan sheep fibroblasts. Finally, Sanger sequencing was performed to identify the target point mutation of FecB and GDF9 genes positive cells. T-A cloning was used to estimate the editing efficiency of the single base editing system. We obtained gRNA targeting FecB and GDF9 genes and constructed the vector aiming at mutating single base of FecB and GDF9 genes in Ouler Tibetan sheep. The editing efficiency for the target site of FecB gene was 39.13%, whereas the editing efficiency for the target sites (G260, G721 and G1184) of GDF9 gene were 10.52%, 26.67% and 8.00%, respectively. Achieving single base mutation in FecB and GDF9 genes may facilitate improving the reproduction traits of Ouler Tibetan sheep with multifetal lambs.


Subject(s)
Animals , Sheep/genetics , Gene Editing , Tibet , Mutation , Phenotype , Mutagenesis, Site-Directed
SELECTION OF CITATIONS
SEARCH DETAIL