Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Year range
Acta Pharmaceutica Sinica B ; (6): 326-338, 2022.
Article in English | WPRIM | ID: wpr-929297


Changes in structure of oral solid dosage forms (OSDF) elementally determine the drug release and its therapeutic effects. In this research, synchrotron radiation X-ray micro-computed tomography was utilized to visualize the 3D structure of enteric coated pellets recovered from the gastrointestinal tract of rats. The structures of pellets in solid state and in vitro compendium media were measured. Pellets in vivo underwent morphological and structural changes which differed significantly from those in vitro compendium media. Thus, optimizations of the dissolution media were performed to mimic the appropriate in vivo conditions by introducing pepsin and glass microspheres in media. The sphericity, pellet volume, pore volume and porosity of the in vivo esomeprazole magnesium pellets in stomach for 2 h were recorded 0.47, 1.55 × 108 μm3, 0.44 × 108 μm3 and 27.6%, respectively. After adding pepsin and glass microspheres, the above parameters in vitro reached to 0.44, 1.64 × 108 μm3, 0.38 × 108 μm3 and 23.0%, respectively. Omeprazole magnesium pellets behaved similarly. The structural features of pellets between in vitro media and in vivo condition were bridged successfully in terms of 3D structures to ensure better design, characterization and quality control of advanced OSDF.

Acta Pharmaceutica Sinica ; (12): 1030-1034, 2020.
Article in Chinese | WPRIM | ID: wpr-821667


It is difficult to directly observe the structural transformation inside of soft capsules if their shells are opaque. This study was designed to noninvasively in situ measure the structural characteristics of the soft capsules and internal particle distributions to reveal the intrinsic quality of the soft capsules and develop a new technique for reverse engineering and the physical stability evaluation of the soft capsules. In this research, the CT projection images of soft capsules, namely, propolis soft capsules, were collected via synchrotron radiation X-ray micro computed tomography (SR-μCT). After three-dimensional reconstruction, the structural differences of the soft capsules under long-term test and accelerated test for 6 months were quantitatively analyzed by calculating the three-dimensional structure parameters such as volume, number and distribution of the particles inside and the thickness for the wall of the capsules. There were only a small number of particles evenly distributed in the soft capsules stored under common storage condition without layering. On the other hand, the shell wall of the soft capsule turned thinner locally at the occlusal portion and the particles with strong X-ray absorption were densely distributed at the edge of the capsule wall after the accelerated test. This study revealed that the structural parameters of soft capsules obtained by SR-μCT could be used to evaluate the influence of storage environment on the physical stability of soft capsules. The technology provides a new method for quality control and evaluation for the soft capsules.