Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
Article in Chinese | WPRIM | ID: wpr-927947

ABSTRACT

Ginsenoside Rh_2 is a rare active ingredient in precious Chinese medicinal materials such as Ginseng Radix et Rhizoma, Notoginseng Radix et Rhizoma, and Panacis Quinquefolii Radix. It has important pharmacological activities such as anti-cancer and improving human immunity. However, due to the extremely low content of ginsenoside Rh_2 in the source plants, the traditional way of obtaining it has limitations. This study intended to apply synthetic biological technology to develop a cell factory of Saccharomyces cerevisiae to produce Rh_2 by low-cost fermentation. First, we used the high protopanaxadiol(PPD)-yielding strain LPTA as the chassis strain, and inserted the Panax notoginseng enzyme gene Pn1-31, together with yeast UDP-glucose supply module genes[phosphoglucose mutase 1(PGM1), α-phosphoglucose mutase(PGM2), and uridine diphosphate glucose pyrophosphorylase(UGP1)], into the EGH1 locus of yeast chromosome. The engineered strain LPTA-RH2 produced 17.10 mg·g~(-1) ginsenoside Rh_2. This strain had low yield of Rh_2 while accumulated much precursor PPD, which severely restricted the application of this strain. In order to further improve the production of ginsenoside Rh_2, we strengthened the UDP glucose supply module and ginsenoside Rh_2 synthesis module by engineered strain LPTA-RH2-T. The shaking flask yield of ginsenoside Rh_2 was increased to 36.26 mg·g~(-1), which accounted for 3.63% of the dry weight of yeast cells. Compared with those of the original strain LPTA-RH2, the final production and the conversion efficiency of Rh_2 increased by 112.11% and 65.14%, respectively. This study provides an important basis for further obtaining the industrial-grade cell factory for the production of ginsenoside Rh_2.


Subject(s)
Fermentation , Ginsenosides , Humans , Panax/genetics , Panax notoginseng , Saccharomyces cerevisiae/genetics , Uridine Diphosphate Glucose
2.
Chinese Journal of Biotechnology ; (12): 1631-1639, 2022.
Article in Chinese | WPRIM | ID: wpr-927807

ABSTRACT

As an emerging branch of biology, Synthetic Biology has seen rapid development with great potential in theoretical research and application. With a lot of brand-new concepts and research methods, it brings challenges to university teachers, and little experience is available in China on the teaching of Synthetic Biology. In this study, we discussed the general education-based development and application of the course on Synthetic Biology (a discipline in "liberal arts" in Zhejiang University) from the background, design, implementation, outcome, and problems of the course, hoping to provide a reference for the optimization of the course and the design of similar courses in other universities in China.


Subject(s)
China , Humans , Synthetic Biology , Universities
3.
Chinese Journal of Biotechnology ; (12): 1619-1630, 2022.
Article in Chinese | WPRIM | ID: wpr-927806

ABSTRACT

Synthetic Biology is one of the most promising fields of modern Biology and a frontier interdisciplinary subject in the 21st century. With the rapid development of synthetic biology, the International Genetically Engineered Machine (iGEM) competition has emerged. The iGEM competition, based on the subject foundation of Synthetic Biology, intends to solve the biological problems in our daily life by applying modern biological technology. In recent years, with the continuous increase of participating teams, the iGEM competition has received extensive attention and achieved great progress. On the basis of the development of Synthetic Biology, we analyzed the 2018-2020 award-winning projects of the iGEM competition and illustrated the role and significance of the iGEM competition in cultivating college students' innovative thinking and ability with the participation experience of the iGEM team of Southwest Jiaotong University as an example.


Subject(s)
Genetic Engineering , Humans , Students , Synthetic Biology , Universities
4.
Chinese Journal of Biotechnology ; (12): 1421-1431, 2022.
Article in Chinese | WPRIM | ID: wpr-927790

ABSTRACT

Traditional methods of microbial synthesis usually rely on a single engineered strain to synthesize the target product through metabolic engineering. The key cofactors, precursors and energy are produced by the introduced complex synthetic pathways. This would increase the physiological burden of engineering strains, resulting in a decrease in the yield of target products. The modular co-culture engineering has become an attractive solution for effective heterologous biosynthesis, where product yield can be greatly improved. In the modular co-culture engineering, the coordination between the population of different modules is essential for increasing the production efficiency. This article summarized recent advances in the application of modular co-culture engineering and population control strategies.


Subject(s)
Coculture Techniques , Metabolic Engineering , Population Control
5.
Chinese Journal of Biotechnology ; (12): 1360-1372, 2022.
Article in Chinese | WPRIM | ID: wpr-927786

ABSTRACT

Yarrowia lipolytica is a non-conventional yeast with unique physiological and metabolic characteristics. It is suitable for production of various products due to its natural ability to utilize a variety of inexpensive carbon sources, excellent tolerance to low pH, and strong ability to secrete metabolites. Currently, Y. lipolytica has been demonstrated to produce a wide range of carboxylic acids with high efficiency. This article summarized the progress in engineering Y. lipolytica to produce various carboxylic acids by using metabolic engineering and synthetic biology approaches. The current bottlenecks and solutions for high-level production of carboxylic acids by engineered Y. lipolytica were also discussed, with the aim to provide useful information for relevant studies in this field.


Subject(s)
Carboxylic Acids/metabolism , Metabolic Engineering , Synthetic Biology , Yarrowia/metabolism
6.
Chinese Journal of Biotechnology ; (12): 1339-1350, 2022.
Article in Chinese | WPRIM | ID: wpr-927784

ABSTRACT

Human activities increase the concentration of atmospheric carbon dioxide (CO2), which leads to global climate warming. Microbial CO2 fixation is a promising green approach for carbon neutral. In contrast to autotrophic microorganisms, heterotrophic microorganisms are characterized by fast growth and ease of genetic modification, but the efficiency of CO2 fixation is still limited. In the past decade, synthetic biology-based enhancement of heterotrophic CO2 fixation has drawn wide attention, including the optimization of energy supply, modification of carboxylation pathway, and heterotrophic microorganisms-based indirect CO2 fixation. This review focuses on the research progress in CO2 fixation by heterotrophic microorganisms, which is expected to serve as a reference for peaking CO2 emission and achieving carbon neutral by microbial CO2 fixation.


Subject(s)
Carbon Cycle , Carbon Dioxide/metabolism , Heterotrophic Processes , Humans , Synthetic Biology
7.
Chinese Journal of Biotechnology ; (12): 1307-1321, 2022.
Article in Chinese | WPRIM | ID: wpr-927782

ABSTRACT

Tetrapyrrole compounds are a class of compounds with important functions. They exist in living organisms and have been widely used in agriculture, food, medicine, and other fields. The cumbersome process and high cost of chemical synthesis, as well as the shortcomings of unstable quality of animal and plant extraction methods, greatly hampered the industrial production and applications of tetrapyrrole compounds. In recent years, the rapid development of synthetic biology has provided new tools for microorganisms to efficiently synthesize tetrapyrrole compounds from renewable biomass resources. This article summarizes various strategies for the biosynthesis of tetrapyrrole compounds, discusses methods to improve its biosynthesis efficiency and future prospects, with the aim to facilitate the research on biosynthesis of tetrapyrrole compounds.


Subject(s)
Biomass , Plants/genetics , Synthetic Biology , Tetrapyrroles
8.
Chinese Journal of Biotechnology ; (12): 1295-1306, 2022.
Article in Chinese | WPRIM | ID: wpr-927781

ABSTRACT

Unnatural amino acids are widely used in medicine, pesticide, material, and other industries and the green and efficient synthesis has attracted a lot of attention. In recent years, with the rapid development of synthetic biology, microbial cell factories have become a promising means for biosynthesis of unnatural amino acids. This study reviewed the construction and application of microbial cell factories for unnatural amino acid, including the synthetic pathway reconstruction, design/modification of key enzymes and their coordinated regulation with precursors, blocking of competitive alternative pathways, and construction of cofactor circulation systems. Meanwhile, on the basis of the new principles for designing the microbial cell factories, new biosynthetic pathways adapted to cells and the production environment, as well as new biomanufacturing system established based on cell adaptive evolution and intelligent fermentation regulation, we looked forward to the further construction and application of microbial cell factories for industrial bio-production.


Subject(s)
Amino Acids/genetics , Biosynthetic Pathways , Fermentation , Metabolic Engineering , Synthetic Biology
9.
Chinese Journal of Biotechnology ; (12): 1267-1294, 2022.
Article in Chinese | WPRIM | ID: wpr-927780

ABSTRACT

This article summarized the reviews and research articles published in Chinese Journal of Biotechnology in the field of biomanufacturing in 2021. The article covered major chassis cells such as Escherichia coli, Bacillus subtilis, Corynebacterium glutamicum, Saccharomyces cerevisiae, filamentous fungi, non-model bacteria and non-conventional yeasts. Moreover, this article summarized the advances in the production of amino acids, organic acids, vitamins, higher alcohols, natural compounds (terpenoids, flavonoids, alkaloids), antibiotics, enzymes and enzyme-catalyzed products, biopolymers, as well as the utilization of biomass and one-carbon materials. The key technologies used in the construction of cell factories, such as regulation, evolution, and high-throughput screening, were also included. This article may help the readers better understand the R & D trend in biomanufacturing driven by engineered microbes.


Subject(s)
Biomass , Biotechnology , Corynebacterium glutamicum/metabolism , Escherichia coli/metabolism , Metabolic Engineering , Saccharomyces cerevisiae/genetics
10.
Chinese Journal of Biotechnology ; (12): 427-442, 2022.
Article in Chinese | WPRIM | ID: wpr-927720

ABSTRACT

Monoterpenoids that belong to the terpenoids family are usually volatile and have strong aroma. Some monoterpenoids also have antioxidant, antibacterial and anti-inflammatory activities, which make them important raw materials for medicine, food and cosmetics industry. In recent years, the heterologous synthesis of monoterpenoids by microorganisms has attracted extensive attention. However, its large-scale application is greatly hampered by the low yield and high production cost. Nowadays, the rapid development of synthetic biology provides new approaches for enhancing the production of monoterpenoids by microorganisms. Different kinds of recombinant strains can be obtained via engineering of microbial cells to produce a variety of monoterpenoids with different properties. This paper summarized the latest strategies and progress in the application of synthetic biology to produce monoterpenoids by microorganisms, including the design and modification of biosynthetic pathway, as well as the design and optimization of high-yield monoterpenoids producing chassis cells.


Subject(s)
Biosynthetic Pathways , Metabolic Engineering , Monoterpenes/metabolism , Synthetic Biology , Terpenes
11.
Acta Pharmaceutica Sinica ; (12): 1322-1335, 2022.
Article in Chinese | WPRIM | ID: wpr-924763

ABSTRACT

Flavonoids is one of the biggest families of the plant-derived secondary metabolites with structural diversity. Until now, over 10 000 kinds of flavonoids with distinct structures have been purified and identified from plants, and some of them possess a range of important pharmacological effects, such as anticancer, anti-inflammatory and so on. So far, a number of genes and enzymes responsible for the biosynthesis of flavonoids have been reported, especially, a great of progress has been achieved in the synthetic biology of flavonoids in the recent years. Herein, based upon a brief introduction on the biosynthesis of flavonoids, this review summarizes the research advances in synthetic biology of flavonoids in the past two decades (2001-2021), highlighting the cell factories construction of the representative flavonoids. And, a brief discussion and prospects of the relevant metabolic bottlenecks and optimizing strategies are proposed.

12.
Acta Pharmaceutica Sinica B ; (6): 3167-3176, 2022.
Article in English | WPRIM | ID: wpr-939956

ABSTRACT

Both natural ginsenoside F2 and unnatural ginsenoside 3β,20S-Di-O-Glc-DM were reported to exhibit anti-tumor activity. Traditional approaches for producing them rely on direct extraction from Panax ginseng, enzymatic catalysis or chemical synthesis, all of which result in low yield and high cost. Metabolic engineering of microbes has been recognized as a green and sustainable biotechnology to produce natural and unnatural products. Hence we engineered the complete biosynthetic pathways of F2 and 3β,20S-Di-O-Glc-DM in Saccharomyces cerevisiae via the CRISPR/Cas9 system. The titers of F2 and 3β,20S-Di-O-Glc-DM were increased from 1.2 to 21.0 mg/L and from 82.0 to 346.1 mg/L at shake flask level, respectively, by multistep metabolic engineering strategies. Additionally, pharmacological evaluation showed that both F2 and 3β,20S-Di-O-Glc-DM exhibited anti-pancreatic cancer activity and the activity of 3β,20S-Di-O-Glc-DM was even better. Furthermore, the titer of 3β,20S-Di-O-Glc-DM reached 2.6 g/L by fed-batch fermentation in a 3 L bioreactor. To our knowledge, this is the first report on demonstrating the anti-pancreatic cancer activity of F2 and 3β,20S-Di-O-Glc-DM, and achieving their de novo biosynthesis by the engineered yeasts. Our work presents an alternative approach to produce F2 and 3β,20S-Di-O-Glc-DM from renewable biomass, which lays a foundation for drug research and development.

13.
Protein & Cell ; (12): 476-489, 2022.
Article in English | WPRIM | ID: wpr-939867

ABSTRACT

Cell therapy approaches that employ engineered mammalian cells for on-demand production of therapeutic agents in the patient's body are moving beyond proof-of-concept in translational medicine. The therapeutic cells can be customized to sense user-defined signals, process them, and respond in a programmable and predictable way. In this paper, we introduce the available tools and strategies employed to design therapeutic cells. Then, various approaches to control cell behaviors, including open-loop and closed-loop systems, are discussed. We also highlight therapeutic applications of engineered cells for early diagnosis and treatment of various diseases in the clinic and in experimental disease models. Finally, we consider emerging technologies such as digital devices and their potential for incorporation into future cell-based therapies.


Subject(s)
Animals , Cell Engineering , Gene Regulatory Networks , Genetic Engineering , Humans , Mammals/genetics , Synthetic Biology
14.
Article in English | WPRIM | ID: wpr-888787

ABSTRACT

Mushrooms are abundant in bioactive natural compounds. Due to strict growth conditions and long fermentation-time, microbe as a production host is an alternative and sustainable approach for the production of natural compounds. This review focuses on the biosynthetic pathways of mushroom originated natural compounds and microbes as the production host for the production of the above natural compounds.


Subject(s)
Agaricales/chemistry , Bacteria/metabolism , Biological Products/metabolism , Biosynthetic Pathways , Fermentation , Metabolic Engineering
15.
Article in Chinese | WPRIM | ID: wpr-888001

ABSTRACT

Coptidis Rhizoma is a common Chinese medicinal in clinical practice,with the effects of clearing heat,drying dampness,purging fire,and removing toxin. All the medicinal plants of Coptis can be used for clinical treatment,but some species are endangered due to resource destruction and difficulty in planting. The dominant medicinal components in Coptidis Rhizoma are isoquinoline alkaloids. There are various methods for the analysis and detection of alkaloids,such as LC-MS,HPLC,and TLC,among which LC-MS is the most widely applied. Different plants of Coptis vary in the kind and content of alkaloids. C. chinensis,C. deltoidea,C. teeta,C. chinensis var. brevisepala,C. omeiensis,C. quinquefolia,and C. quinquesecta mainly contain berberine,palmatine,coptisine,jatrorrhizine,and columbamine,five effective alkaloid components. Plant isoquinoline alkaloids( PIAs) have strong pharmacological activity but are difficult to prepare. The application of synthetic biology of PIAs will be helpful for the clinical application of PIAs. This paper reviews the research progress on biological resources of Coptis species and structures of alkaloids as well as analysis methods and synthetic biology for isoquinoline alkaloids in the medicinal plants of Coptis in recent years,which will facilitate the protection of Coptis medicinal resources and the application and development of alkaloids.


Subject(s)
Alkaloids , Berberine , Berberine Alkaloids , Coptis , Drugs, Chinese Herbal , Isoquinolines , Rhizome
16.
Article in Chinese | WPRIM | ID: wpr-887977

ABSTRACT

Ginkgolides,the unique terpenoids in Ginkgo biloba,have a significant effect on the prevention and treatment of cardiovascular and cerebrovascular diseases. Metabolic regulation and synthetic biology strategies are efficient methods to obtain high-quality ginkgolides. The present study reviewed the cloning and functions of genes related to the biosynthetic pathway of ginkgolides,as well as relevant studies of omics,genetic transformation,and metabolic regulation in recent years,and predicted the research trends and prospects,aiming to provide a reference for discovering the key genes related to the biosynthetic pathway and the biosynthesis of ginkgolides.


Subject(s)
Ginkgo biloba/genetics , Ginkgolides , Humans , Lactones , Plant Extracts , Terpenes
17.
Chinese Journal of Biotechnology ; (12): 2765-2778, 2021.
Article in Chinese | WPRIM | ID: wpr-887839

ABSTRACT

Petroleum hydrocarbon pollutants are difficult to be degraded, and bioremediation has received increasing attention for remediating the hydrocarbon polluted area. This review started by introducing the interphase adaptation and transport process of hydrocarbon by microbes. Subsequently, the advances made in the identification of hydrocarbon-degrading strains and genes as well as elucidation of metabolic pathways and underpinning mechanisms in the biodegradation of typical petroleum hydrocarbon pollutants were summarized. The capability of wild-type hydrocarbon degrading bacteria can be enhanced through genetic engineering and metabolic engineering. With the rapid development of synthetic biology, the bioremediation of hydrocarbon polluted area can be further improved by engineering the metabolic pathways of hydrocarbon-degrading microbes, or through design and construction of synthetic microbial consortia.


Subject(s)
Bacteria/genetics , Biodegradation, Environmental , Hydrocarbons , Petroleum , Petroleum Pollution/analysis , Soil Microbiology , Soil Pollutants
18.
Chinese Journal of Biotechnology ; (12): 2050-2076, 2021.
Article in Chinese | WPRIM | ID: wpr-887781

ABSTRACT

Plant polyphenols are phenylpropanoid derivatives including phenolic acids, stilbenes, curcumins and flavonoids. These compounds display a variety of biological and pharmacological activities such as antioxidation, vasorelaxation, anti-coagulation, anti-inflammation, anti-tumor and anti-virus, conferring a huge application potential in the sectors of drugs, foods, cosmetics, and chemicals. Microorganisms have become important hosts for heterologous synthesis of natural products due to the advantages of fast growth, easiness of culture and industrial operation. In recent years, the development of synthetic biology has boosted the microbial synthesis of plant natural products, achieving substantial progress. In this review, we summarize the synthesis of plant polyphenols in engineered Escherichia coli, Saccharomyces cerevisiae and other microorganisms equipped with the designed biosynthetic pathways of polyphenols. We also discuss the optimization strategies such as precursor engineering, dynamic regulation, and co-cultivation to improve the production of polyphenols and propose future prospects for polyphenol pathway engineering.


Subject(s)
Biosynthetic Pathways , Metabolic Engineering , Plants , Polyphenols , Saccharomyces cerevisiae/genetics
19.
Chinese Journal of Biotechnology ; (12): 2010-2025, 2021.
Article in Chinese | WPRIM | ID: wpr-887778

ABSTRACT

Plant-derived aromatic natural products have important medicinal value and can be made into pharmaceutical and healthcare products with antibacterial, anti-inflammatory, analgesic, anti-oxidative, insecticidal and anthelmintic, expectorant and cough suppressant, tranquilizer and antitumor effects. However, the low content of aromatic natural products in plants and the difficulty and high costs in extraction and purification hampered its large-scale production and application. Recent advances in synthetic biology and metabolic engineering have enabled the tailor-made production of aromatic natural products using engineered microbial cell factories. This review summarizes the categories, the synthetic pathways, the key enzymes and the synthetic biology strategies for production of aromatic natural products, and discusses the challenges and opportunities in this area.


Subject(s)
Biological Products , Metabolic Engineering , Plants , Synthetic Biology
20.
Chinese Journal of Biotechnology ; (12): 1931-1951, 2021.
Article in Chinese | WPRIM | ID: wpr-887773

ABSTRACT

Medicinal natural products derived from plants are usually of low content and difficult to extract and isolate. Moreover, these compounds are structurally complex, making it difficult to obtain them by environmental unfriendly chemical synthesis. Biosynthesis of medicinal natural products through synthetic biology is a novel, environment-friendly and sustainable approach. Taking terpenoids (ginsenosides, paclitaxel, artemisinin, tanshinones), alkaloids (vincristine and morphine), and flavonoids (breviscapine) as examples, this review summarizes the advances of the biosynthetic pathways and synthetic biology strategies of plant-derived medicinal natural products. Moreover, we introduce the key technologies and methods of synthetic biology used in the research of medicinal natural products, and provide future prospects in this area.


Subject(s)
Biological Products , Biosynthetic Pathways , Plants , Synthetic Biology , Terpenes
SELECTION OF CITATIONS
SEARCH DETAIL