Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Article in Chinese | WPRIM | ID: wpr-987039

ABSTRACT

OBJECTIVE@#To propose a diffusion tensor field estimation network based on 3D U-Net and diffusion tensor imaging (DTI) model constraint (3D DTI-Unet) to accurately estimate DTI quantification parameters from a small number of diffusion-weighted (DW) images with a low signal-to-noise ratio.@*METHODS@#The input of 3D DTI-Unet was noisy diffusion magnetic resonance imaging (dMRI) data containing one non-DW image and 6 DW images with different diffusion coding directions. The noise-reduced non-DW image and accurate diffusion tensor field were predicted through 3D U-Net. The dMRI data were reconstructed using the DTI model and compared with the true value of dMRI data to optimize the network and ensure the consistency of the dMRI data with the physical model of the diffusion tensor field. We compared 3D DTI-Unet with two DW image denoising algorithms (MP-PCA and GL-HOSVD) to verify the effect of the proposed method.@*RESULTS@#The proposed method was better than MP-PCA and GL-HOSVD in terms of quantitative results and visual evaluation of DW images, diffusion tensor field and DTI quantification parameters.@*CONCLUSION@#The proposed method can obtain accurate DTI quantification parameters from one non-DW image and 6 DW images to reduce image acquisition time and improve the reliability of quantitative diagnosis.


Subject(s)
Diffusion Tensor Imaging , Reproducibility of Results , Diffusion Magnetic Resonance Imaging , Algorithms , Signal-To-Noise Ratio
SELECTION OF CITATIONS
SEARCH DETAIL