Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 33-42, 2022.
Article in English | WPRIM | ID: wpr-929234

ABSTRACT

Ubiquitin-proteasome system (UPS) plays an important role in neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). The discovery of UPS activators for anti-neurodegenerative diseases is becoming increasingly important. In this study, we aimed to identify potential UPS activators using the high-throughput screening method with the high-content fluorescence imaging system and validate the neuroprotective effect in the cell models of AD. At first, stable YFP-CL1 HT22 cells were successfully constructed by transfecting the YFP-CL1 plasmid into HT22 cells, together with G418 screening. The degradation activity of the test compounds via UPS was monitored by detecting the YFP fluorescence intensity reflected by the ubiquitin-proteasome degradation signal CL1. By employing the high-content fluorescence imaging system, together with stable YFP-CL1 HT22 cells, the UPS activators were successfully screened from our established TCM library. The representative images were captured and analyzed, and quantification of the YFP fluorescence intensity was performed by flow cytometry. Then, the neuroprotective effect of the UPS activators was investigated in pEGFP-N1-APP (APP), pRK5-EGFP-Tau P301L (Tau P301L), or pRK5-EGFP-Tau (Tau) transiently transfected HT22 cells using fluorescence imaging, flow cytometry, and Western blot. In conclusion, our study established a high-content fluorescence imaging system coupled with stable YFP-CL1 HT22 cells for the high-throughput screening of the UPS activators. Three compounds, namely salvianolic acid A (SAA), salvianolic acid B (SAB), and ellagic acid (EA), were identified to significantly decrease YFP fluorescence intensity, which suggested that these three compounds are UPS activators. The identified UPS activators were demonstrated to clear AD-related proteins, including APP, Tau, and Tau P301L. Therefore, these findings provide a novel insight into the discovery and development of anti-AD drugs.


Subject(s)
Humans , Alzheimer Disease/drug therapy , Neuroprotective Agents , Optical Imaging , Proteasome Endopeptidase Complex , Ubiquitin
2.
China Journal of Chinese Materia Medica ; (24): 6224-6230, 2021.
Article in Chinese | WPRIM | ID: wpr-921780

ABSTRACT

Alzheimer's disease(AD) patients in China have been surging, and the resultant medical burden and care demand have a huge impact on the development of individuals, families, and the society. The active component compound of Epimedii Folium, Astragali Radix, and Puerariae Lobatae Radix(YHG) can regulate the expression of iron metabolism-related proteins to inhibit brain iron overload and relieve hypofunction of central nervous system in AD patients. Hepcidin is an important target regulating iron metabolism. This study investigated the effect of YHG on the expression of a disintegrin and metalloprotease-17(ADAM17), a key enzyme in the hydrolysis of β amyloid precursor protein(APP) in HT22 cells, by mediating hepcidin. To be specific, HT22 cells were cultured in vitro, followed by liposome-mediated siRNA transfection to silence the expression of hepcidin. Real-time PCR and Western blot were performed to examine the silencing result and the effect of YHG on hepcidin in AD cell model. HT22 cells were randomized into 7 groups: control group, Aβ25-35 induction(Aβ) group, hepcidin-siRNA(siRNA) group, Aβ25-35 + hepcidin-siRNA(Aβ + siRNA) group, Aβ25-35+YHG(Aβ+YHG) group, hepcidin-siRNA+YHG(siRNA+YHG) group, Aβ25-35+hepcidin-siRNA+YHG(Aβ+siRNA+YHG) group. The expression of ADAM17 mRNA in cells was detected by real-time PCR, and the expression of ADAM17 protein by immunofluorescence and Western blot. Immunofluorescence showed that the ADAM17 protein expression was lower in the Aβ group, siRNA group, and Aβ+siRNA group than in the control group(P<0.05) and the expression was lower in the Aβ+siRNA group(P<0.05) and higher in the Aβ+YHG group(P<0.05) than in the Aβ group. Moreover, the ADAM17 protein expression was lower in the Aβ+siRNA group(P<0.05) and higher in the siRNA+YHG group(P< 0.05) than in the siRNA group. The expression was higher in the Aβ+siRNA+YHG group than in the Aβ+siRNA group(P<0.05). The results of Western blot and real-time PCR were consistent with those of immunofluorescence. The experiment showed that YHG induced hepcidin to up-regulate the expression of ADAM17 in AD cell model and promote the activation of non-starch metabolic pathways, which might be the internal mechanism of YHG in preventing and treating AD.


Subject(s)
Humans , ADAM17 Protein , Alzheimer Disease/genetics , Amyloid beta-Peptides , Drugs, Chinese Herbal/pharmacology , Hepcidins/genetics , Pueraria
SELECTION OF CITATIONS
SEARCH DETAIL