Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Acta cir. bras ; 29(11): 711-714, 11/2014. tab, graf
Article in English | LILACS | ID: lil-728641

ABSTRACT

PURPOSE: To create in vitro a model to generate acidosis by CO2 bubbling "organ chambers", which would be useful for researchers that aim to study the effects of acid-base disturbs on the endothelium-dependent vascular reactivity. METHODS: Eighteen male Wistar rats (230-280g) were housed, before the experiments, under standard laboratory conditions (12h light/dark cycle at 21°C), with free access to food and water. The protocol for promoting in vitro respiratory acidosis was carried out by bubbling increased concentrations of CO2. The target was to achieve an ideal way to decrease the pH gradually to a value of approximately 6.6.It was used, initially, a gas blender varying concentrations of the carbogenic mixture (95% O2 + 5% CO2) and pure CO2. RESULTS: 1) 100% CO2, pH variation very fast, pH minimum 6.0; 2) 90%CO2 pH variation bit slower, pH minimum6.31; 3) 70%CO2, pH variation slower, pH minimum 6.32; 4) 50% CO2, pH variation slower, pH minimum 6:42; 5) 40 %CO2, Adequate record, pH minimum 6.61, and; 6) 30 %CO2 could not reach values below pH minimum 7.03. Based on these data the gas mixture (O2 60% + CO2 40%) was adopted, CONCLUSION: This gas mixture (O2 60% + CO2 40%) was effective in inducing respiratory acidosis at a speed that made, possible the recording of isometric force. .


Subject(s)
Animals , Male , Acidosis, Respiratory/chemically induced , Carbon Dioxide/metabolism , Disease Models, Animal , Endothelium, Vascular/metabolism , Acidosis, Respiratory/metabolism , Acidosis, Respiratory/physiopathology , Blood Gas Analysis , Carbon Dioxide/chemistry , Endothelium, Vascular/chemistry , Endothelium, Vascular/physiopathology , Endothelium-Dependent Relaxing Factors/metabolism , Hydrogen-Ion Concentration , In Vitro Techniques , Rats, Wistar , Reference Values , Reproducibility of Results
2.
Journal of Korean Medical Science ; : 764-769, 2005.
Article in English | WPRIM | ID: wpr-176550

ABSTRACT

To investigate whether hypercapnic acidosis, induced by adding CO2 to inspired gas, would be protective effect against ventilator-induced lung injury (VILI), we ventilated 55 normal white rabbits for 6 hr or until PaO2/FIO2 <200 mmHg. Control group (n=15) was ventilated with peak inspiratory pressure (PIP) of 15 cm H2O, positive end-expiratory pressure (PEEP) of 3 cm H2O, an inspiration-to-expiration ratio of 1:2, and an inspired oxygen fraction (FIO2) of 0.40. High pressure hypercapnic group (HPHC; n=20) was ventilated with PIP of 30 cm H2O, PEEP of 0 cm H2O, and FIO2 of 0.40. Carbon dioxide was introduced into the inspiratory limb of the ventilator circuit, as necessary to maintain hypercapnia (PaCO2, 65 to 75 mmHg). High pressure normocapnic group (HPNC; n=20) was ventilated with same setting of HPHC, except normocapnia (PaCO2, 35 to 45 mmHg). Bronchoalveolar lavage fluid (BALF) lactate dehydrogenase, aspartate aminotransferase, interleukin-8 were significantly higher in high pressure ventilator group than control group (p<0.05). Wet weight to dry weight (WW/DW) and histologic scores were significantly higher in high pressure ventilator group than control group (p<0.05). However, there were no significant differences in oxygenation, BALF inflammatory markers, WW/DW and histologic scores between HPHC and HPNC groups. These findings suggest that hypercapnic acidosis at least induced by CO2 insufflation would not be protective effect against VILI in this model.


Subject(s)
Animals , Rabbits , Acidosis, Respiratory/chemically induced , Administration, Inhalation , Carbon Dioxide/administration & dosage , Hypercapnia/chemically induced , Inhalation , Pulmonary Gas Exchange , Respiration, Artificial/adverse effects , Respiratory Distress Syndrome/diagnosis , Treatment Outcome
3.
Article in English | IMSEAR | ID: sea-91273

ABSTRACT

We report two cases of aluminium phosphide poisoning who presented with rare manifestations, one with bleeding diathesis, hepatitis and acute tubular necrosis and the other with acute respiratory failure.


Subject(s)
Acidosis, Respiratory/chemically induced , Adolescent , Adult , Aluminum Compounds , Blood Coagulation Disorders/chemically induced , Female , Hemorrhage/chemically induced , Humans , Male , Pesticides/poisoning , Phosphines/poisoning
SELECTION OF CITATIONS
SEARCH DETAIL