Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Language
Year range
1.
Electron. j. biotechnol ; 40: 52-57, July. 2019. graf, tab
Article in English | LILACS | ID: biblio-1053462

ABSTRACT

Background: Plastic waste is a serious problem because it is difficult to degrade, thereby leading to global environment problems. Poly(lactic acid) (PLA) is a biodegradable aliphatic polyester derived from renewable resources, and it can be degraded by various enzymes produced by microorganisms. This study focused on the scale-up and evaluated the bioprocess of PLA degradation by a crude microbial enzyme produced by Actinomadura keratinilytica strain T16-1 in a 5 L stirred tank bioreactor. Results: PLA degradation after 72 h in a 5 L bioreactor by using the enzyme of the strain T16-1 under controlled pH conditions resulted in lactic acid titers (mg/L) of 16,651 mg/L and a conversion efficiency of 89% at a controlled pH of 8.0. However, the PLA degradation process inadvertently produced lactic acid as a potential inhibitor, as shown in our experiments at various concentrations of lactic acid. Therefore, the dialysis method was performed to reduce the concentration of lactic acid. The experiment with a dialysis bag achieved PLA degradation by weight loss of 99.93%, whereas the one without dialysis achieved a degradation of less than approximately 14.75%. Therefore, the dialysis method was applied to degrade a commercial PLA material (tray) with a conversion efficiency of 32%, which was 6-fold more than that without dialysis. Conclusions: This is the first report demonstrating the scale-up of PLA degradation in a 5 L bioreactor and evaluating a potential method for enhancing PLA degradation efficiency.


Subject(s)
Polyesters/metabolism , Actinomycetales/enzymology , Enzymes/metabolism , Polymers/metabolism , Biodegradation, Environmental , Lactic Acid/analysis , Bioreactors , Hydrogen-Ion Concentration
2.
Electron. j. biotechnol ; 30: 71-76, nov. 2017. graf, ilus, tab
Article in English | LILACS | ID: biblio-1021543

ABSTRACT

Background: Poly(DL-lactic acid), or PDLLA, is a biodegradable polymer that can be hydrolyzed by various types of enzymes. The protease produced by Actinomadura keratinilytica strain T16-1 was previously reported to have PDLLA depolymerase activity. However, few studies have reported on PDLLA-degrading enzyme production by bacteria. Therefore, the aims of this study were to determine a suitable immobilization material for PDLLA-degrading enzyme production and optimize PDLLA-degrading enzyme production by using immobilized A. keratinilytica strain T16-1 under various fermentation process conditions in a stirrer fermenter. Results: Among the tested immobilization materials, a scrub pad was the best immobilizer, giving an enzyme activity of 30.03 U/mL in a shake-flask scale. The maximum enzyme activity was obtained at aeration 0.25 vvm, agitation 170 rpm, 45°C, and 48 h of cultivation time. Under these conditions, a PDLLA-degrading enzyme production of 766.33 U/mL with 15.97 U/mL·h productivity was observed using batch fermentation in a 5-L stirrer fermenter. Increased enzyme activity and productivity were observed in repeated-batch (942.67 U/mL and 19.64 U/mL·h) and continuous fermentation (796.43 U/mL and 16.58 U/mL·h) at a dilution rate of 0.013/h. Scaled-up production of the enzyme in a 10-L stirrer bioreactor using the optimized conditions showed a maximum enzyme activity of 578.67 U/mL and a productivity of 12.06 U/mL·h. Conclusions: This research successfully scaled-up the enzyme production to 5 and 10 L in a stirrer fermenter and is helpful for many applications of poly(lactic acid).


Subject(s)
Polyesters/metabolism , Actinomycetales/enzymology , Enzymes/biosynthesis , Biodegradation, Environmental , Bioreactors , Enzymes/metabolism , Enzymes, Immobilized , Fermentation
3.
Electron. j. biotechnol ; 19(6): 56-62, Nov. 2016. ilus
Article in English | LILACS | ID: biblio-840314

ABSTRACT

Background: Endoglucanase, one of three type cellulases, can randomly cleave internal p-1,4-linkages in cellulose polymers. Thus, it could be applied in agricultural and industrial processes. Results: A novel endoglucanase gene (JqCel5A) was cloned from Jonesia quinghaiensis and functionally expressed in Escherichia coli Rosetta (DE3). It contained 1722 bp and encoded a 573-residue polypeptide consisting of a catalytic domain of glycoside hydrolase family 5 (GH5) and a type 2 carbohydrate-binding module (CBM2), together with a predicted molecular mass of 61.79 kD. The purified JqCel5A displayed maximum activity at 55°C and pH 7.0, with 21.7 U/mg, 26.19 U/mg and 4.81 U/mg towards the substrate carboxymethyl cellulose, barley glucan and filter paper, respectively. Interestingly, JqCel5A exhibited high pH stability over a broad pH range of pH (3-11), and had good tolerance to a wide variety of deleterious chemicals including heavy metals and detergent. The catalytic mechanism of JqCel5A was also investigated by site mutagenesis and homology-modeling in this study. Conclusions: It was believed that these properties might make JqCel5A to be potentially used in the suitable industrial catalytic condition, which has a broad pH fluctuation and/or chemical disturbance.


Subject(s)
Actinomycetales/enzymology , Cellulases/chemistry , Cellulases/isolation & purification , Cellulases/genetics , Hydrogen-Ion Concentration , Mutagenicity Tests , Temperature
4.
Indian J Exp Biol ; 2003 Aug; 41(8): 870-4
Article in English | IMSEAR | ID: sea-60626

ABSTRACT

Keratinolytic potential of A. keratinophila (DSM 44409T), a newly described Amycolatopsis sp. isolated from cultivated soil in Kuwait, was demonstrated using keratinazure as the sole source of carbon and nitrogen as estimated by gel diffusion assay. Effects of 12 various nutritional supplements on the keratinolytic and azocollytic activities were determined. NH4H2PO4 and KNO3 in the medium supported a significantly higher keratinolytic activity than other supplements. However, azocollytic activities in all the supplemented media and the control were same. Best combination of carbon and nitrogen supplements (galactose and NH4H2PO4 respectively) used to evaluate the dynamics of growth and enzymes (keratinase and protease) activities of the isolate revealed a luxuriant growth with optimal keratinolytic activity occurring during the log phase. Other parameters of the fermentation medium, including pH, biomass accumulation, total protein and free amino acid concentrations were also studied.


Subject(s)
Actinomycetales/enzymology , Biomass , Carbon , Culture Media , Endopeptidases/biosynthesis , Keratins/metabolism , Nitrogen , Peptide Hydrolases/biosynthesis , Sepharose/metabolism
5.
Hindustan Antibiot Bull ; 1993 Feb-May; 35(1-2): 23-32
Article in English | IMSEAR | ID: sea-2347
SELECTION OF CITATIONS
SEARCH DETAIL