Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Journal of Zhejiang University. Science. B ; (12): 713-727, 2019.
Article in English | WPRIM | ID: wpr-1010479

ABSTRACT

Production of reactive oxygen species (ROS) is a conserved immune response primarily mediated by NADPH oxidases (NOXs), also known in plants as respiratory burst oxidase homologs (RBOHs). Most microbe-associated molecular patterns (MAMPs) trigger a very fast and transient ROS burst in plants. However, recently, we found that lipopolysaccharides (LPS), a typical bacterial MAMP, triggered a biphasic ROS burst. In this study, we isolated mutants defective in LPS-triggered biphasic ROS burst (delt) in Arabidopsis, and cloned the DELT1 gene that was shown to encode RBOHD. In the delt1-2 allele, the antepenultimate residue, glutamic acid (E919), at the C-terminus of RBOHD was mutated to lysine (K). E919 is a highly conserved residue in NADPH oxidases, and a mutation of the corresponding residue E568 in human NOX2 has been reported to be one of the causes of chronic granulomatous disease. Consistently, we found that residue E919 was indispensable for RBOHD function in the MAMP-induced ROS burst and stomatal closure. It has been suggested that the mutation of this residue in other NADPH oxidases impairs the protein's stability and complex assembly. However, we found that the E919K mutation did not affect RBOHD protein abundance or the ability of protein association, suggesting that the residue E919 in RBOHD might have a regulatory mechanism different from that of other NOXs. Taken together, our results confirm that the antepenultimate residue E is critical for NADPH oxidases and provide a new insight into the regulatory mechanisms of RBOHD.


Subject(s)
Humans , Agrobacterium tumefaciens/metabolism , Alleles , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Genetic Techniques , Lipopolysaccharides/metabolism , Luminescence , Mutation , NADPH Oxidase 2/chemistry , NADPH Oxidases/genetics , Plant Stomata/metabolism , Protein Domains , Reactive Oxygen Species/metabolism , Nicotiana/metabolism
2.
Electron. j. biotechnol ; 32: 6-12, Mar. 2018. tab, graf, ilus
Article in English | LILACS | ID: biblio-1022493

ABSTRACT

Background: Hydrophobins are small proteins secreted by filamentous fungi, which show a highly surface activity. Because of the signally self-assembling abilities and surface activities, hydrophobins were considered as candidates in many aspects, for example, stabilizing foams and emulsions in food products. Lentinus tuber-regium, known as tiger milk mushroom, is both an edible and medicinal sclerotium-producing mushroom. Up to now, the hydrophobins of L. tuber-regium have not been identified. Results: In this paper, a Class I hydrophobin gene, Ltr.hyd, was cloned from L. tuber-regium and expressed in the yeast-like cells of Tremella fuciformis mediated by Agrobacterium tumefaciens. The expression vector pGEH-GH was under the control of T. fuciformis glyceraldehyde-3-phosphate dehydrogenase gene (gpd) promoter. The integration of Ltr.hyd into the genome of T. fuciformis was confirmed by PCR, Southern blot, fluorescence observation and quantitative real-time PCR (qRT-PCR). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) demonstrated that recombinant hydrophobin rLtr.HYD with an expected molecular mass of 13 kDa was extracted. The yield of rLtr.HYD was 0.66 mg/g dry weight. The emulsifying activity of rLtr.HYD was better than the typical food emulsifiers sodium caseinate and Tween 20. Conclusions: We evaluated the emulsifying property of hydrophobin Ltr.HYD, which can be potentially used as a food emulsifier.


Subject(s)
Basidiomycota/metabolism , Fungal Proteins/genetics , Lentinula/genetics , Lentinula/metabolism , Transformation, Genetic , Basidiomycota/enzymology , Yeasts , Fungal Proteins/metabolism , Blotting, Southern , Cloning, Molecular , Agrobacterium tumefaciens/metabolism , Sequence Analysis , Emulsifying Agents , Electrophoresis, Polyacrylamide Gel , Real-Time Polymerase Chain Reaction , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Microscopy, Fluorescence
3.
Article in English | IMSEAR | ID: sea-135753

ABSTRACT

Background & objectives: Catheter associated urinary tract infections are the second most common nosocomial infections and Pseudomonas aeruginosa is the third most common organism responsible for these infections. In this study P. aeruginosa isolates from catheterized urinary tract infection patients were screened and profiled for the presence of different type of quorum sensing (QS) signal molecules. Methods: Screening and quantitation of AHLs was done by using cross feeding assay and by determining β-galactosidase activity respectively using Escherichia coli MG4 as reporter strain. Further, AHL profiles were determined by separating AHLs on TLC coupled with their detection using Chromobacterium violaceum CV026 and Agrobacterium tumifaciens A136 biosensor strains. Results: All uroisolates from catheterized patients having urinary tract infections were found to be producers of QS signal molecules. There were differences in amounts and type of AHL produced amongst uroisolates of P. aeruginosa. Several AHLs belonging to C4-HSL, C6-HSL, oxo-C6-HSL, C8-HSL, C10-HSL and C12-HSL were determined in these strains. Interpretation & conclusions: Simultaneous use of more than one reporter strain and assay method proved useful in determining the AHLs profile in uroisolates of P. aeruginosa. Observed differences in the amounts and types of AHLs may reflect differences in virulence potential of P. aeruginosa to cause UTIs which can be further confirmed by employing animal model system. The present study speculates that production of QS signal molecules may act as a new virulence marker of P. aeruginosa responsible for causing catheter associated UTIs and can be considered as futuristic potential drug targets towards treatment of UTIs.


Subject(s)
Acyl-Butyrolactones/analysis , Acyl-Butyrolactones/metabolism , Agrobacterium tumefaciens/metabolism , Biosensing Techniques/methods , Catheter-Related Infections/microbiology , Chromatography, Thin Layer/methods , Chromobacterium/metabolism , Humans , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/pathogenicity , Quorum Sensing , Urinary Tract Infections/microbiology , Virulence
4.
Electron. j. biotechnol ; 12(1): 3-4, Jan. 2009. ilus, tab
Article in English | LILACS | ID: lil-538045

ABSTRACT

Malus zumi is known as an excellent dwarfing apple rootstock occurring in natural or arid/semiarid soil or salina. Gene manipulation of M. zumi through transgenic technology can modify plant feature for further improvement fruit tree production by grafting the scion on a transgenic rootstock. Here, we report the establishment of an efficient, in vitro, shoot regeneration system and Agrobacterium tumefaciens- mediated transformation from the leaf explants for Malus zumi (Matsumura) Rehd. Leaf explants were infected with Agrobacterium strains containing nptII and gus gene. The highest frequency of shoot regeneration was obtained on MS medium containing 500 mg l-1 Lactalbumin hydrolysate, 30 g l-1 fructose, supplemented with 3.0 mg l-1 BA, 0.2 mg l-1 NAA.Using fructose instead of sucrose significantly increases the shoot regeneration and decreases vitrification. This regeneration procedure was incorporated into an Agrobacterium-mediated transformation procedure in M. zumi. Kanamycin was an efficient selective agent for selection. Pre-selection (5 days after co-cultivation) improved the transformation efficiency. The emergence of expected bands by PCR analysis and Southern blot in transgenic plantlets confirmed the transformation of foreign DNA into plant genome.


Subject(s)
Malus/genetics , Plants, Genetically Modified , Agrobacterium tumefaciens/enzymology , Agrobacterium tumefaciens/metabolism , Blotting, Southern , Kanamycin/pharmacokinetics , Kanamycin/chemical synthesis , Kanamycin/therapeutic use , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL