Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Indian J Biochem Biophys ; 2014 Dec ; 51(6): 467-475
Article in English | IMSEAR | ID: sea-156525

ABSTRACT

Guanine nucleotide regulatory proteins (G proteins) play a key role in the regulation of various signal transduction systems, including adenylyl cyclase/cAMP and phospholipase C (PLC)/phosphatidyl inositol (PI) turnover, which are implicated in the modulation of a variety of physiological functions, such as platelet functions, including platelet aggregation, secretion, and clot formation and cardiovascular functions, including arterial tone and reactivity. Several abnormalities in adenylyl cyclase activity, cAMP levels and G proteins have been shown to be responsible for the altered cardiac performance and vascular functions observed in cardiovascular disease states. The enhanced or unaltered levels of inhibitory G proteins (Giα) and mRNA have been reported in different models of hypertension, whereas Gsα levels are shown to be unaltered. The enhanced levels of Giα proteins precede the development of blood pressure and suggest that overexpression of Gi proteins may be one of the contributing factors for the pathogenesis of hypertension. The levels of vasoactive peptides including ET-1 and Ang II and growth factors are augmented in hypertension and contribute to the enhanced expression of Giα proteins in hypertension. In addition, oxidative stress due to enhanced levels of Ang II and ET-1 is enhanced in hypertension and may also be responsible for the enhanced expression of Giα proteins observed in hypertension. Furthermore, Ang II- and ET-1-induced transactivation of growth factor receptor through the activation of MAP kinase signaling is also shown to contribute to the augmented levels of Giα in hypertension. Thus, it appears that the enhanced levels of vasoactive peptides by increasing oxidative stress and transactivation growth factor receptors enhance MAP kinase activity that contribute to the enhanced expression of Giα proteins responsible for the pathogenesis of hypertension. In this review, we describe the role of vasoactive peptides and the signaling mechanisms responsible for the enhanced expression of Giα proteins in hypertension.


Subject(s)
Angiotensin II/immunology , Animals , Blood Pressure/immunology , Blood Vessels/immunology , Endothelin-1/immunology , GTP-Binding Protein alpha Subunits/immunology , /immunology , Humans , Hypertension/immunology , Models, Cardiovascular , Models, Immunological , Oxidative Stress/immunology , Signal Transduction/immunology , Vasomotor System/immunology
2.
Indian J Biochem Biophys ; 2014 Dec ; 51(6): 449-456
Article in English | IMSEAR | ID: sea-156523

ABSTRACT

Aneurysms develop as a result of chronic inflammation of vascular bed, where progressive destruction of structural proteins, especially elastin and collagen of smooth muscle cells has been shown to manifest. The underlying mechanisms are an increase in local production of proinflammatory cytokines and subsequent increase in proteases, especially matrix metalloproteinases (MMPs) that degrade the structural proteins. The plasminogen system: urokinase-type PA (u-PA), tissue-type PA (t-PA) and plasminogen activator inhibitor-1 (PAI-1) and the MMPs system-MMPs and TIMPs contribute to the progression and development of aneurysms. Recent studies suggest that aneurysms may be genetically determined. To date, most observable candidate genes for aneurysm (elastin, collagen, fibrillin, MMPs and TIMPs) have been explored with little substantiation of the underlying cause and effect. Recently, overexpression of the MMP-2 gene has been suggested as an important phenomenon for aneurysm formation. Along with MMPs, matrix formation also depends on JNK (c-Jun N-terminal kinase) as its activation plays important role in downregulating several genes of matrix production. Under stress, activation of JNK by various stimuli, such as angiotensin II, tumor necrosis factor-α and interleukin-1β has been noted significantly in vascular smooth muscle cells. Several therapeutic indications corroborate that inhibition of MMP-2 and JNK is useful in preventing progression of vascular aneurysms. This review deals with the role of proteases in the progression of vascular aneurysm.


Subject(s)
Aneurysm/immunology , Animals , Blood Vessels/immunology , Cytokines/immunology , Enzyme Activation , Models, Cardiovascular , Models, Immunological , Peptide Hydrolases/immunology , Signal Transduction/immunology
SELECTION OF CITATIONS
SEARCH DETAIL