Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Electron. j. biotechnol ; 17(6): 262-267, Nov. 2014. ilus, graf, tab
Article in English | LILACS | ID: lil-730256

ABSTRACT

Background The Tibetan pig is a pig breed with excellent grazing characteristics indigenous to the Qinghai-Tibet plateau in China. Under conditions of barn feeding, 90% of its diet consists of forage grass, which helps meet its nutritional needs. The present study aimed to isolate and identify a cellulolytic bacterium from the Tibetan pig's intestine and investigate cellulase production by this bacterium. The study purpose is to provide a basic theory for the research and development of herbivore characteristics and to identify a source of probiotics from the Tibetan pig. Results A cellulolytic bacterium was isolated from a Tibetan pig's intestine and identified based on morphological, physiological, and biochemical characteristics as well as 16S rRNA analysis; it was designated Bacillus subtilis BY-2. Examination of its growth characteristics showed that its growth curve entered the logarithmic phase after 8-12 h and the stable growth phase being between 20 and 40 h. The best carbon source for fermentation was 1% corn flour, while 2% peptone and yeast powder compound were the best nitrogen sources. The initial pH during fermentation was 5.5, with 4% inoculum, resulting in a high and stable amount of enzyme in 24-48 h. Conclusions The isolated BY-2 strain rapidly grew and produced cellulase. We believe that BY-2 cellulase can help overcome the shortage of endogenous animal cellulase, improve the utilization rate of roughage, and provide strain sources for research on porcine probiotics.


Subject(s)
Animals , Bacteria/isolation & purification , Bacteria/metabolism , Carboxymethylcellulose Sodium/metabolism , Sus scrofa , Intestines/microbiology , Swine , RNA, Ribosomal, 16S/analysis , Fermentation , Hydrogen-Ion Concentration , Nitrogen
2.
Braz. j. microbiol ; 44(2): 529-537, 2013. graf, tab
Article in English | LILACS | ID: lil-688598

ABSTRACT

The potentiality of 23 bacterial isolates to produce alkaline protease and carboxymethyl-cellulase (CMCase) on Ficus nitida wastes was investigated. Bacillus pumillus ATCC7061 was selected as the most potent bacterial strain for the production of both enzymes. It was found that the optimum production of protease and CMCase were recorded at 30 °C, 5% Ficus nitida leaves and incubation period of 72 h. The best nitrogen sources for protease and CMCase production were yeast extract and casein, respectively. Also maximum protease and CMCase production were reported at pH 9 and pH 10, respectively. The enzymes possessed a good stability over a pH range of 8-10, expressed their maximum activities at pH10 and temperature range of 30-50 °C, expressed their maximum activities at 50 °C. Ions of Hg2+, Fe2+ and Ag+ showed a stimulatory effect on protease activity and ions of Fe2+, Mg2+, Ca2+, Cu2+ and Ag+ caused enhancement of CMCase activity. The enzymes were stable not only towards the nonionic surfactants like Triton X-100 and Tween 80 but also the strong anionic surfactant, SDS. Moreover, the enzymes were not significantly inhibited by EDTA or cystein. Concerning biotechnological applications, the enzymes retained (51-97%) of their initial activities upon incubation in the presence of commercials detergents for 1 h. The potential use of the produced enzymes in the degradation of human hair and cotton fabric samples were also assessed.


Subject(s)
Bacillus/enzymology , Bacillus/growth & development , Bacterial Proteins/metabolism , Carboxymethylcellulose Sodium/metabolism , Endopeptidases/metabolism , Ficus/microbiology , Industrial Waste , Bacterial Proteins/chemistry , Carboxymethylcellulose Sodium/chemistry , Enzyme Stability , Endopeptidases/chemistry , Enzyme Activators/metabolism , Hydrogen-Ion Concentration , Metals/metabolism , Temperature , Time Factors
3.
Yonsei Medical Journal ; : 1491-1497, 2013.
Article in English | WPRIM | ID: wpr-100948

ABSTRACT

PURPOSE: Postoperative adhesion is the most frequent complication of abdominal surgery. Therefore, we investigated the individual effects of synthetic barrier [hyaluronic acid/carboxymethylcellulose (HA/CMC)] and pharmacologic agents [low molecular weight heparin (LMWH) cyclo-oxygenase-2 inhibitor (COX-2 inhibitor)] using animal model of intra-abdominal adhesion. MATERIALS AND METHODS: The cecum was rubbed with sterile alcohol wet gauze until subserosal haemorrhage and punctate bleeding developed under the general anesthesia. Five animal groups were prepared using the film HA/CMC, gel HA/CMC, LMWH and COX-2 inhibitor. RESULTS: The grade of adhesion by modified Leach method for group I (control), II (film type HA/CMC), III (gel type HA/CMC), IV (LMWH) and V (COX-2 inhibitor) were 5.35+/-1.8, 6.15+/-1.3, 4.23+/-2.6, 5.05+/-0.7 and 5.50+/-0.9, respectively. Group III showed the least grade of adhesion and it is statistically significant in adhesion formation (p=0.028). The numbers of lymphocytes were significantly low in group III and group V compared to the control group (lymphocyte: p=0.004). The mast cell counts were generally low except for the control group (I: 1.05, II: 0.35, III: 0.38, IV: 0.20, V: 0.37), however, it was not statistically significant (p=0.066). CONCLUSION: The gel barriers were shown to be partly efficient in inhibiting the formation of postoperative adhesions and might provide an option for abdominal surgery to reduce postoperative adhesions. The LMWH and COX-2 inhibitor had been known for their inhibitor effect of fibrin formation and anti-angiogenic/anti-fibroblastic activity, respectively. However, their preventive effects of adhesion and fibrosis were found to be obscure.


Subject(s)
Animals , Male , Rats , Carboxymethylcellulose Sodium/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , Heparin, Low-Molecular-Weight/pharmacology , Rats, Sprague-Dawley , Tissue Adhesions/prevention & control
4.
Rev. microbiol ; 20(4): 460-5, out.-dez. 1989. tab
Article in English | LILACS | ID: lil-97150

ABSTRACT

O fungo termo-celulolítico Humicola sp apresentou alta atividade de exo-ß-D-glucanase (C1) ligada a célula e baixa atividade de endo ß-Glucanase (Cx) ligada a célula e no sobrenadante. Celulose microcristalina foi melhor indutor de celulase e melhor fonte de carbono do que carboximetil celulose. A atividade de ß-glucosidase foi medida somente so sobrenadante da cultura e seu valor foi maior quando carboximetil celulose foi usada como fonte de carbono em pH 7.0


Subject(s)
Trichoderma/enzymology , Carboxymethylcellulose Sodium/metabolism , Cellulase/metabolism , Cellulose/metabolism , Trichoderma/metabolism , Glucosidases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL