Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Acta cir. bras ; 36(10): e361007, 2021. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1349866

ABSTRACT

ABSTRACT Purpose: To evaluate the effects of sucralfate enemas in tissue contents of E-cadherin and ?-catenin in an experimental diversion colitis. Methods: Thirty-six male Wistar rats were submitted to a proximal colostomy and a distal mucous fistula. They were allocated into three groups: first group received daily saline enemas (2 mL/day) and the two other groups daily enemas with sucralfate at dosage of 1 or 2 g/kg/day, respectively. Six animals of each group were euthanized after two weeks and six animals after four weeks. The inflammation of the excluded mucosa was evaluated by histological analysis. The oxidative damage was quantified by measurement of malondialdehyde tissue levels. The expression of E-cadherin and ?-catenin was identified by immunohistochemistry, and its contents were quantified by computer-assisted image analysis. Results: Sucralfate enemas reduced inflammation in animals subjected to treatment with 2 g/kg/day by four weeks, and the levels of oxidative damage in mucosa without fecal stream irrespective of concentration and time of intervention. E-cadherin and ?-catenin content increased in segments without fecal stream in those animals subjected to treatment with sucralfate. Conclusions: Sucralfate reduces the inflammation and oxidative stress and increases the tissue content of E-cadherin and ?-catenin in colonic mucosa devoid to the fecal stream.


Subject(s)
Humans , Animals , Rats , Sucralfate/metabolism , Catenins/metabolism , Cadherins/metabolism , Rats, Wistar , Oxidative Stress , Enema , Intestinal Mucosa/metabolism
2.
Biol. Res ; 51: 31, 2018. graf
Article in English | LILACS | ID: biblio-983936

ABSTRACT

BACKGROUND: miR-214 was demonstrated to be upregulated in models of renal disease and promoted fibrosis in renal injury independent of TGF-ß signaling in vivo. However, the detailed role of miR-214 in acute kidney injury (AKI) and its underlying mechanism are still largely unknown. METHODS: In this study, an I/R-induced rat AKI model and a hypoxia-induced NRK-52E cell model were used to study AKI. The concentrations of kidney injury markers serum creatinine, blood urea nitrogen, and kidney injury molecule-1 were measured. The expressions of miR-214, tumor necrosis factor-α, interleukin (IL)-1ß, IL-6, were detected by RT-qPCR. The protein levels of Bcl-2, Bax, Dickkopf-related protein 3, ß-catenin, c-myc, and cyclinD1 were determined by western blot. Cell apoptosis and caspase 3 activity were evaluated by flow cytometry analysis and caspase 3 activity assay, respectively. Luciferase reporter assay was used to confirm the interaction between miR-214 and Dkk3. RESULTS: miR-214 expression was induced in ischemia-reperfusion (I/R)-induced AKI rat and hypoxic incubation of NRK-52E cells. Overexpression of miR-214 alleviated hypoxia-induced NRK-52E cell apoptosis while inhibition of miR-214 expression exerted the opposite effect. Dkk3 was identified as a target of miR-214. Anti-miR-214 abolished the inhibitory effects of DKK3 knockdown on hypoxia-induced NRK-52E cell apoptosis by inactivation of Wnt/ß-catenin signaling. Moreover, miR-214 ameliorated AKI in vivo by inhibiting apoptosis and fibrosis through targeting Dkk3 and activating Wnt/ß -catenin pathway. CONCLUSION: miR-214 ameliorates AKI by inhibiting apoptosis through targeting Dkk3 and activating Wnt/ß -catenin signaling pathway, offering the possibility of miR-214 in the therapy of ischemic AKI.


Subject(s)
Animals , Male , Rats , Intercellular Signaling Peptides and Proteins/metabolism , MicroRNAs/metabolism , Catenins/metabolism , Acute Kidney Injury/metabolism , Wnt Signaling Pathway/genetics , Rats, Sprague-Dawley , Chemokines , Intercellular Signaling Peptides and Proteins/genetics , MicroRNAs/genetics , Adaptor Proteins, Signal Transducing , Cell Proliferation , Disease Models, Animal , Catenins/genetics , Acute Kidney Injury/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL